首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   493篇
  免费   15篇
  国内免费   5篇
化学   289篇
晶体学   6篇
力学   6篇
数学   71篇
物理学   141篇
  2022年   4篇
  2021年   4篇
  2018年   4篇
  2016年   10篇
  2015年   8篇
  2014年   9篇
  2013年   16篇
  2012年   17篇
  2011年   18篇
  2010年   9篇
  2009年   11篇
  2008年   22篇
  2007年   24篇
  2006年   22篇
  2005年   33篇
  2004年   18篇
  2003年   19篇
  2002年   21篇
  2001年   18篇
  2000年   8篇
  1999年   7篇
  1998年   4篇
  1997年   5篇
  1996年   14篇
  1995年   14篇
  1994年   9篇
  1993年   5篇
  1992年   10篇
  1990年   7篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   6篇
  1985年   8篇
  1984年   8篇
  1982年   7篇
  1981年   6篇
  1980年   11篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   4篇
  1975年   7篇
  1974年   9篇
  1973年   6篇
  1972年   3篇
  1971年   3篇
  1969年   3篇
  1968年   3篇
  1967年   3篇
排序方式: 共有513条查询结果,搜索用时 15 毫秒
61.
The P‐coordinated boryl radical [Ph2P(naphthyl)BMes]. (Mes=mesityl) was prepared by (electro)chemical reduction of the corresponding borenium salt or bromoborane. Electron paramagnetic resonance (EPR) analysis in solution and DFT calculations indicate large spin density on boron (60–70 %) and strong P–B interactions (P→B σ donation and B→P negative hyperconjugation). The radical is persistent in solution and participates in a Gomberg‐type dimerization process. The associated quinoid‐type dimer has been characterized by single‐crystal X‐ray diffraction.  相似文献   
62.
Compounds that modulate microtubule dynamics include highly effective anticancer drugs, leading to continuing efforts to identify new agents and improve the activity of established ones. Here, we demonstrate that [(3)H]-labeled halichondrin B (HB), a complex, sponge-derived natural product, is bound to and dissociated from tubulin rapidly at one binding site per αβ-heterodimer, with an apparent K(d) of 0.31 μM. We found no HB-induced aggregation of tubulin by high-performance liquid chromatography, even following column equilibration with HB. Binding of [(3)H]HB was competitively inhibited by a newly approved clinical agent, the truncated HB analogue eribulin (apparent K(i), 0.80 μM) and noncompetitively by dolastatin 10 and vincristine (apparent K(i)'s, 0.35 and 5.4 μM, respectively). Our earlier studies demonstrated that HB inhibits nucleotide exchange on β-tubulin, and this, together with the results presented here, indicated the HB site is located on β-tubulin. Using molecular dynamics simulations, we determined complementary conformations of HB and β-tubulin that delineated in atomic detail binding interactions of HB with only β-tubulin, with no involvement of the α-subunit in the binding interaction. Moreover, the HB model served as a template for an eribulin binding model that furthered our understanding of the properties of eribulin as a drug. Overall, these results established a mechanistic basis for the antimitotic activity of the halichondrin class of compounds.  相似文献   
63.
The design, synthesis, and biological evaluation of two diminutive forms of (+)-spongistatin 1, in conjunction with the development of a potentially general design strategy to simplify highly flexible macrocyclic molecules while maintaining biological activity, have been achieved. Examination of the solution conformations of (+)-spongistatin 1 revealed a common conformational preference along the western perimeter comprising the ABEF rings. Exploiting the hypothesis that the small-molecule recognition/binding domains are likely to comprise the conformationally less mobile portions of a ligand led to the design of analogues, incorporating tethers (blue) in place of the CD and the ABCD components of the (+)-spongistatin 1 macrolide, such that the conformation of the retained (+)-spongistatin 1 skeleton would mimic the assigned solution conformations of the natural product. The observed nanomolar cytotoxicity and microtubule destabilizing activity of the ABEF analogue provide support for both the assigned solution conformation of (+)-spongistatin 1 and the validity of the design strategy.  相似文献   
64.
Cellulose-binding domains have been isolated from various cellulases, and proteins, which lack hydrolytic activity. The hypothesis that a cellulose-binding domain can be used to alter surface and mechanical properties of paper was tested. Two cellulose-binding domains from Clostriium cellulovorans were fused to form a cellulose crosslinking protein (CCP). The recombinant bifunctional cellulose-binding protein was expressed in E. coli, appliedby immersion onto Whatman cellulose filter paper, and its mechanical properties were tested. The purified protein improved the treated paper's mechanical properties (tensile strength, brittleness, Young's modulus and energy to break). In addition, cellulose crosslinking protein treatment was shown to transform filter paper into a more water-repellent paper. The binding of cellulose-binding domains to cellulose under a wide range of envi-ronmentalconditions, without the need for chemical reactions, and its biodegradability make them attractive moieties for the design of a new class of paper-modification materials.p>  相似文献   
65.
The dilute solution behavior of several alternating copolymers of maleic acid has been characterized by static and dynamic light scattering, intrinsic viscosity, and pulsed-gradient spin-echo NMR spectroscopy. The copolymer of maleic acid–sodium salt and isobutylene (IBMA-Na, Mw ∼350 kg/mol) dissolves readily in concentrated aqueous salt solutions. Changes in chain dimensions with ionic strength and pH are similar to those of the lesser salt solution-soluble poly(acrylic acid-sodium salt). The hydrophobically modified (with n-butyl, n-hexyl, n-octyl, and phenethyl amines) copolymers of maleic acid–sodium salts and isobutylene (IBMA-NHR-Na) show no sign of large intermolecular aggregation in 0.1 N sodium acetate (NaAc). However, the sizes of the copolymers are relatively small compared to that of the ionized parent copolymer (IBMA-Na, Mw ∼350 kg/mol), suggesting intramolecular aggregation of the alkyl side-chain groups along the polymer backbone. The copolymer modified with the longer chain n-decyl, on the other hand, forms stable large intermolecular aggregates containing 33 chains/aggregate. The copolymers of maleic acid–sodium salt and styrene (SMA-Na) appear to have no signs of aggregation, despite being a hydrophobic polyelectrolyte. The copolymer of maleic acid–sodium salt and di-isobutylene (DIBMA-Na) has a similar salting-out concentration as SMA-Na. The radius of gyration measurements by static light scattering suggest that at least some fraction of the DIBMA-Na chains form large intermolecular aggregates. The copolymers of maleic acid–sodium salt with n-alkenes (n-CmMA-Na) in 0.1 N NaAc form small intermolecular aggregates (three to five chains/aggregate). In contrast to these static light scattering results, PGSE NMR diffusion measurements for the above aggregated systems indicate only one diffusion coefficient consistent with the motion of single isolated chains. A plausible explanation for this discrepancy is that the population of the aggregates is too small to be sufficiently detected in the PGSE NMR experiment. Furthermore, it is likely that the aggregate has a larger relaxation rate than the nonaggregate, and therefore has a comparatively reduced signal in the PGSE NMR experiment. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3584–3597, 2004  相似文献   
66.
Electron-capture negative ion chemical ionization (EC-NICI) and field desorption (FD) mass spectrometric techniques were utilized to examine polyfluorinated C60. Two different samples from the same preparation, one prior to sublimation and the other sublimed material, were investigated. From the raw non-sublimed product in EC-NCI six series of ions corresponding to different numbers of attached oxygen atoms were obtained, which are represented by the formula [C60F2nOm]?, where n ranged from 0 to 30 and m from 0 to 5. The sublimed material in EC-NICI produced the same six series of ions with up to 48 fluorine atoms attached to C60. The field desorption of the same sample produced similar results, but the signal-to-noise ratios of the spectra were low. Both samples, in the two different techniques examined, yielded C60F60 ions with only an even number of fluorine atoms attached. The present investigation, for the first time, provides direct experimental evidence for the existence of higher fluorinated C60 up to C60F60 and multiple oxides of polyfluoro-C60 with up to five oxygen atoms attached.  相似文献   
67.
68.
69.
Previously, we studied a variety of ionomer morphologies with scanning transmission electron microscopy (STEM). Other groups have found that deconvoluting STEM images dramatically improve the overall image quality and the detection of sub‐nanometer‐scale features. In this study, STEM images of nanometer‐scale ion‐rich aggregates were deconvolved via the Pixon method with a simulated electron probe. The image models are considerably sharper with significantly decreased noise levels, thus making the size and shape of the ionic aggregates easier to distinguish relative to those in the raw STEM images. Raw and deconvoluted images of Zn‐neutralized poly(styrene‐ran‐methacrylic acid) ionomers containing spherical ionic aggregates indicate that the electron density varies smoothly from the edge to the center of the aggregates. Deconvolution also clarifies the issue of aggregate overlap in the STEM images. Furthermore, line scans across deconvoluted STEM images suggest that the three‐dimensional density distribution of these nanoaggregates compares favorably with a radially symmetric Gaussian distribution as opposed to a uniformly dense sphere. The overall result of this work is that deconvolution of STEM images provide ways in which to better investigate the morphologies of ionomers. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 319–326, 2003  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号