首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   5篇
化学   60篇
物理学   6篇
  2023年   1篇
  2022年   3篇
  2020年   3篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2012年   1篇
  2011年   3篇
  2009年   3篇
  2008年   5篇
  2006年   5篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  2000年   2篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1984年   4篇
  1983年   4篇
  1982年   1篇
  1980年   4篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
11.
In this paper we report on the measurements of the absorption spectra of large van der Waals complexes in planar supersonic jets. The absorption spectra and the fluorescence excitation spectra of the complexes of 9,10-dichloroanthracene (DCA) with Ar atoms are reported for the S0 → S1(0) vibrationless transition of DCA·Arn (n = 1?6), and from the S0 → S1 (1390 cm?1) transition of DCA·Arn (n = 1?4). Information on the structure of these complexes was inferred from the additivity of the spectral shifts per added rare-gas atom (ASSRA) for DCA·ARn (n = 1.2) and from deviations from the ASSRA for CDA-Arn (n = 3?6). The vibrational predissociation (VP) dynamics of DCA-Arn (n = 1?3) complexes was interrogated by fluorescence quantum yield, Y, measurements. The value of the S1 (1390 cm?1) state of DCA·Arn (n = 1?3) exhibits a dramatic enhancement relative to that of DCA. Utilizing the dependence of Y on the excess vibrational energy of bare DCA, we were able to estimate the internal energy of the fragments resulting from VP of DCA·Arn of DCA·Arn (n = 1?3). An upper limit of ? 100 ps was estimated for the VP (and/or vibrational energy redistribution) lifetime from the S1 (1390 cm?1) state of DCA·Ar3.  相似文献   
12.
The time-of-flight (TOF) technique was used to study the aerodynamical acceleration in seeded supersonic molecular beams of heavy molecules and light seeding gas. We also studied the correlation between the degree of aerodynamic acceleration achieved, and rotational-vibrational temperatures as measured using the laser-induced fluorescence (LIF) technique. The velocity slip (difference) between helium and hydrogen carrier gases and iodine and aniline heavy molecules was determined in free-jet expansion by TOF measurements and compared with rotational temperatures measured by LIF. The helium translational temperature was found to be abnormally high and dependent on teh heavy-molecule concentration, even at concentration as low as 400 ppm. In the case of iodine it was found that the rotational degrees of freedom were equilibrated with the helium or hydrogen seeding gas translational and slip temperatures, although this temperature was more than an order of magnitude higher than theoretical predictions obtained for the pure-gas expansion. In aniline, the rotational temperature is found to be higher than the gas-dynamic temperature and rotational relaxation is incomplete. The heavy-molecule kinetic energy increases linearly with the light-gas pressure up to = 50% of its maximum available kinetic energy. The possibility of making accurate heavy-molecule kinetic-energy measurements using the LIF technique is discussed. It is claimed that the existence of velocity slip can largely effect theoretical calculations concerning vibrational and rotational relaxation in seeded supersonic beams.  相似文献   
13.
A novel, simple, and inexpensive approach to sorptive extraction, which we call solvent in silicone tube extraction (SiSTEx), was applied to pesticide residue analysis and its effectiveness and efficiency were evaluated. In SiSTEx, which is a form of open tubular sorptive extraction, a piece of silicone tubing (4 cm long, 1.47 mm ID, 1.96 mm OD in this study) is attached to the cap of a 20 mL glass vial that contains the aqueous sample. The tubing is plugged at the end dangling in the sample solution, and MeCN (e.g., 40 microL) added by syringe to the inner tube volume through a septum in the cap. A stir-bar is used to mix the sample for a certain time (e.g., 60 min), which allows chemicals to partition into the tubing where they diffuse across the silicone and partition into the MeCN. The final MeCN extract is then analyzed for the concentrated analytes. In this study, the SiSTEx approach was evaluated for the analysis of organophosphorus (OP) and organochlorine (OC) pesticides in fruits and vegetables using GC/pulsed flame photometric (PFPD) and halogen specific (XSD) detectors for analysis. The produced samples were initially extracted by a rapid MeCN procedure, and 5 mL of the initial extract was diluted four-fold with water to undergo sorptive extraction for 60 min. The final extract was analyzed by GC/PFPD + XSD for 14 OP and 22 OC pesticides. This simple approach was able to detect 26 of the 36 pesticides at 10 ng/g or less original equivalent sample concentration with average reproducibility of 11% RSD. For those 26 pesticides, a 44-fold lower detection limit on average was achieved in matrix extracts using SiSTEx despite the four-fold dilution with water.  相似文献   
14.
Hydrocarbon analysis with standard GC-MS is confronted by the limited range of volatile compounds amenable for analysis and by the similarity of electron ionization mass spectra for many compounds which show weak or no molecular ions for heavy hydrocarbons. The use of GC-MS with supersonic molecular beams (Supersonic GC-MS) significantly extends the range of heavy hydrocarbons that can be analyzed, and provides trustworthy enhanced molecular ion to all hydrocarbons. In addition, unique isomer mass spectral features are obtained in the ionization of vibrationally cold hydrocarbons. The availability of molecular ions for all hydrocarbons results in the ability to obtain unique chromatographic isomer distribution patterns that can serve as a new method for fuel characterization and identification. Examples of the applicability and use of this novel isomer abundance analysis (IAA) method to diesel fuel, kerosene and oil analyses are shown. It is suggested that in similarity to the "three ions method" for identification purposes, three isomer abundance patterns can serve for fuel characterization. The applications of the Supersonic GC-MS for engine motor oil analysis and transformer oil analysis are also demonstrated and discussed, including the capability to achieve fast 1-2s sampling without separation for oil and fuel fingerprinting. The relatively fast analysis of biodiesel is described, demonstrating the provision of molecular ions to heavy triglycerides. Isomer abundance analysis with the Supersonic GC-MS could find broad range of applications including petrochemicals and fuel analysis, arson analysis, environmental oil/fuel spill analysis, fuel adulteration analysis and motor oil analysis.  相似文献   
15.
A novel method for fast analysis is presented. It is based on laser desorption injection followed by fast gas chromatography-mass spectrometry (GC-MS) in supersonic molecular beams. The sample was placed in an open air or purged laser desorption compartment, held at atmospheric pressure and near room temperature conditions. Desorption was performed with a XeCl Excimer pulsed laser with pulse energy of typically 3 mJ on the surface. About 20 pulses at 50 Hz were applied for sample injection, resulting in about 0.4 s injection time and one or a few micrograms sample vapor or small particles. The laser desorbed sample was further thermally vaporized at a heated frit glass filter located at the fast GC inlet. Ultrafast GC separation and quantification was achieved with a 50-cm-long megabore column operated with a high carrier gas flow rate of up to 240 mL/min. The high carrier gas flow rate provided effective and efficient entrainment of the laser desorbed species in the sweeping gas. Following the fast GC separation, the sample was analyzed by mass spectrometry in supersonic molecular beams. Both electron ionization and hyperthermal surface ionization were employed for enhanced selectivity and sensitivity. Typical laser desorption analysis time was under 10 s. The laser desorption fast GC-MS was studied and demonstrated with the following sample/matrices combinations, all without sample preparation or extraction: (a) traces of dioctylphthalate plasticizer oil on stainless steel surface and the efficiency of its cleaning; (b) the detection of methylparathion and aldicarb pesticides on orange leaves; (c) water surface analysis for the presence of methylparathion pesticide; (d) caffeine analysis in regular and decaffeinated coffee powder; (e) paracetamol and codeine drug analysis in pain relieving drug tablets; (f) caffeine trace analysis in raw urine; (g) blood analysis for the presence of 1 ppm lidocaine drug. The features and advantages of the laser desorption fast GC-MS are demonstrated and discussed.  相似文献   
16.
Keshet  Uri  Fialkov  Alexander B.  Alon  Tal  Amirav  Aviv 《Chromatographia》2016,79(11):741-754

We designed and operated a new system of pulsed flow modulation (PFM) two dimensional comprehensive gas chromatography (GC × GC) mass spectrometry (MS). This system is based on the combination of PFM–GC × GC with a quadrupole mass spectrometer of GC–MS via a supersonic molecular beams interface and its fly-through Cold EI ion source and applied this system for the analysis of JP8 jet fuel. PFM is a simple GC × GC modulator that does not consume cryogenic gases while providing tunable second GC × GC column injection time for enabling the use of quadrupole based mass spectrometry regardless its limited scanning speed. We analyzed JP8 jet fuel with our new PFM–GC × GC–MS with Cold EI system and found that as the second dimension GC elution time is increased the observed molecular ion mass is reduced. This unique observation that helped in improved sample compounds identification under co-elution conditions was enabled via having abundant molecular ions in Cold EI for all the fuel compounds. We named this type of analysis as PFM–GC × GC × MS. We found and discuss in this paper that PFM–GC × GC–MS with Cold EI combines improved separation of GC × GC with Cold EI benefits of tailing-free ultra-fast ion source response time and enhanced molecular ions and mass spectral isomer and isotope information for the provision of increased sample identification information.

  相似文献   
17.
18.
19.
20.
Gas chromatography-mass spectrometry (GC-MS) with supersonic molecular beams (SMBs) (also named Supersonic GC-MS) is based on GC and MS interface with SMBs and on the electron ionization (EI) of vibrationally cold analytes in the SMBs (cold EI) in a fly-through ion source. This ion source is inherently inert and further characterized by fast response and vacuum background filtration capability. The same ion source offers three modes of ionization including cold EI, classical EI and cluster chemical ionization (CI). Cold EI, as a main mode, provides enhanced molecular ions combined with an effective library sample identification, which is supplemented and complemented by a powerful isotope abundance analysis method and software. The range of low-volatility and thermally labile compounds amenable for analysis is significantly increased owing to the use of the contact-free, fly-through ion source and the ability to lower sample elution temperatures through the use of high column carrier gas flow rates. Effective, fast GC-MS is enabled particularly owing to the possible use of high column flow rates and improved system selectivity in view of the enhancement of the molecular ion. This fast GC-MS with SMB can be further improved via the added selectivity of MS-MS, which by itself benefits from the enhancement of the molecular ion, the most suitable parent ion for MS-MS. Supersonic GC-MS is characterized by low limits of detection (LOD), and its sensitivity is superior to that of standard GC-MS, particularly for samples that are hard for analysis. The GC separation of the Supersonic GC-MS can be improved with pulsed flow modulation (PFM) GC x GC-MS. Electron ionization LC-MS with SMB can also be combined with the Supersonic GC-MS, with fast and easy switching between these two modes of operation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号