首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   10篇
  国内免费   3篇
化学   103篇
晶体学   2篇
力学   12篇
数学   29篇
物理学   25篇
  2023年   2篇
  2022年   4篇
  2021年   1篇
  2020年   15篇
  2019年   4篇
  2018年   12篇
  2017年   6篇
  2016年   11篇
  2015年   12篇
  2014年   11篇
  2013年   22篇
  2012年   14篇
  2011年   18篇
  2010年   8篇
  2009年   6篇
  2008年   5篇
  2007年   8篇
  2006年   4篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  1991年   1篇
  1987年   1篇
  1984年   1篇
排序方式: 共有171条查询结果,搜索用时 437 毫秒
101.
The reflectivity of sputtered Zirconium nitride films on glass substrate has been investigated in the spectral energy range of 0.8–6.1 eV as a function of deposition temperature varying between 373 and 723 K. Optical constants of the prepared films have been determined using the Drude analysis. Experimental results showed strong dependency of optical properties of the films, such as optical resistivity on the substrate temperature. The temperature increase of the substrate has shown an increase in both the plasmon frequency and electron scattering time. The electrical behavior of the films showed a good agreement between their optical and electrical resistivity.  相似文献   
102.
The potential applications of nanoplates in energy storage, chemical and biological sensors, solar cells, field emission, and transporting of nanocars have been attracted the attentions of the nanotechnology community to them during recent years. Herein, the later application of nanoplates from nonlocal elastodynamic point of view is of interest. To this end, dynamic response of a nanoplate subjected to a moving nanoparticle is examined within the context of nonlocal continuum theory of Eringen. The fully simply supported nanoplate is modeled based on the nonlocal Kirchhoff, Mindlin, and higher-order plate theories. The non-dimensional equations of motion of the nonlocal plate models are established. The effects of moving nanoparticle's weight and existing friction between the surfaces of the moving nanoparticle and nanoplate on the in-plane and out-of-plane vibrations of the nanoplate are incorporated into the formulations of the proposed models. The eigen function expansion and the Laplace transform methods are employed for discretization of the governing equations in the spatial and the time domains, respectively. The analytical expressions of the dynamic deformation field associated with each nonlocal plate theory are obtained when the moving nanoparticle traverses the nanoplate on an arbitrary straight path (an opened path) as well as an ellipse path (a closed path). The dynamic in-plane forces and moments of each nonlocal plate model are also derived. Furthermore, the critical velocity and the critical angular velocity of the moving nanoparticle for the proposed models are expressed analytically for the aforementioned paths. Part II of this work consists in a comprehensive parametric study where the effects of influential parameters on dynamic response of the proposed nonlocal plate models are scrutinized in some detail.  相似文献   
103.
The possible usage of nanoplates in transporting of nanovehicles encouraged the author to propose some nonlocal plate models in the companion paper where the nanovehicle (i.e., moving nanoparticle) was modeled by a moving point load by considering its friction with the upper surface of the nanoplate. In this paper, a comprehensive parametric study is carried out to study the effects of length to thickness ratio of the nanoplate, small-scale parameter, and velocity (or angular velocity) of the moving nanoparticle on dynamic response of nonlocal Kirchhoff, Mindlin, and higher-order plates subjected to a moving nanoparticle. Herein, dynamic response of the nanoplate covers both time histories and dynamic amplitude factors of the in- and out-of-plane displacements. The capabilities of various nonlocal plate models in predicting the displacement field caused by friction and mass weight of the moving nanoparticle are then explored through various numerical analyses for two cases: (i) the moving nanoparticle moves along a diagonal of the nanoplate; (ii) the moving nanoparticle orbits on an ellipse path whose center is coincident with the nanoplate's center. The obtained results indicate that due to the incorporation of small-scale effect into shear strain energy of the nanoplate, an appropriate nonlocal plate model should be used. The results show that the choice of the nanoplate model to use relies on the small-scale parameter, geometrical properties of the nanoplate, and velocity of the moving nanoparticle.  相似文献   
104.
The Klein–Gordon–Schrödinger equations describe a classical model of the interaction between conservative complex neutron field and neutral meson Yukawa in quantum field theory. In this paper, we study the long-time behavior of solutions for the Klein–Gordon–Schrödinger equations. We propose the Chebyshev pseudospectral collocation method for the approximation in the spatial variable and the explicit Runge–Kutta method in time discretization. In comparison with the single domain, the domain decomposition methods have good spatial localization and generate a sparse space differentiation matrix with high accuracy. In this study, we choose an overlapping multidomain scheme. The obtained numerical results show the Pseudospectral multidomain method has excellent long-time numerical behavior and illustrate the effectiveness of the numerical scheme in controlling two particles. Some comparisons with single domain pseudospectral and finite difference methods will be also investigated to confirm the efficiency of the new procedure.  相似文献   
105.
Moghaddasi  Mehdi  Kiani  Yaser 《Meccanica》2022,57(5):1105-1124
Meccanica - In the present investigation, free vibration and also forced vibration response of a graphene platelet reinforced composite (GPLRC) laminated curved beam is investigated. It is assumed...  相似文献   
106.
Research on Chemical Intermediates - The reaction of the free amine group in polyaryl-substituted imidazole structures with phenyl isocyanate or dimethyl acetylenedicarboxylate gave two new series...  相似文献   
107.
Based on extensive computational studies, rules to derive the thermodynamically most stable macropolyhedral borane for any formula between BnHn−4 to BnHn+8 were identified. Formally, the macropolyhedral boranes may be obtained by condensing regular convex borane clusters where as many BH3 moieties are eliminated as vertexes are shared in the macropolyhedral framework. Macropolyhedral boranes consisting of two cluster fragments may be classified according to their general formulae ranging from BnHn−4 to BnHn+8. For each of these formulae, various structure types are conceivable differing in the number of shared vertexes and in the types of combined cluster fragments. However, for each general formula, only one structure type is known experimentally and this one is also computationally found to be thermodynamically preferred! For each class of macropolyhedral BnHm boranes, a preferred number of shared vertexes is identified, and this determines the number of skeletal electron pairs. With this knowledge, the type of fused clusters, i.e. the most favourable framework, may be predicted. The concept of preferred fragments may be applied to even predict the distribution of vertexes among the fused fragments in the thermodynamically most stable isomers. When there is at least one closo fragment it has 12-vertexes. Without any closo fragment the most stable macropolyhedral borane has a nido 10-vertex cluster fragment.  相似文献   
108.
Magnetic ion-imprinted polymer nanospheres, which have core–shell structures, have been synthesized as an adsorbent for extraction of Pb2+ from real samples prior to its flame atomic absorption spectrometric determination. The prepared adsorbent has been characterized using XRD, VSM, TEM, and FTIR measurements. The optimization results revealed that the adsorbent exhibited high selectivity toward Pb2+ over other cations such as Cu2+ and Zn2+. In addition, the removal efficiency of synthesized adsorbent was considerable (qm?=?171.42?mg g?1), its calibration curve was linear (0.5?850.0?ng mL?1), and detection limit was 0.01?ng mL?1. These results suggested that the prepared nanoadsorbent is an ideal candidate for solid-phase extraction of Pb2+ ions.  相似文献   
109.
The experimentally validated computational models developed herein, for the first time, show that Mn-promotion does not enhance the activity of the surface Na2WO4 catalytic active sites for CH4 heterolytic dissociation during OCM. Contrary to previous understanding, it is demonstrated that Mn-promotion poisons the surface WO4 catalytic active sites resulting in surface WO5 sites with retarded kinetics for C–H scission. On the other hand, dimeric Mn2O5 surface sites, identified and studied via ab initio molecular dynamics and thermodynamics, were found to be more efficient in activating CH4 than the poisoned surface WO5 sites or the original WO4 sites. However, the surface reaction intermediates formed from CH4 activation over the Mn2O5 surface sites are more stable than those formed over the Na2WO4 surface sites. The higher stability of the surface intermediates makes their desorption unfavorable, increasing the likelihood of over-oxidation to COx, in agreement with the experimental findings in the literature on Mn-promoted catalysts. Consequently, the Mn-promoter does not appear to have an essential positive role in synergistically tuning the structure of the Na2WO4 surface sites towards CH4 activation but can yield MnOx surface sites that activate CH4 faster than Na2WO4 surface sites, but unselectively.

The experimentally validated computational models developed herein, for the first time, show that Mn-promotion does not necessarily enhance the activity of the surface Na2WO4 catalytic active sites for CH4 heterolytic dissociation during OCM.  相似文献   
110.
In this study, synthesis, characterization and catalytic performance of a novel supramolecular photocatalytic system including palladium (II) encapsulated within amine‐terminated poly (triazine‐triamine) dendrimer modified TiO2 nanoparticles (Pd (II) [PTATAD] @ TiO2) is presented. The obtained nanodendritic catalyst was characterized by FT‐IR, ICP‐AES, XPS, EDS, TEM, TGA and UV‐DRS. The as‐prepared nanodendritic catalyst was shown to be highly active, selective, and recyclable for the Suzuki–Miyaura and Sonogashira cross‐coupling of a wide range of aryl halides including electron‐rich and electron‐poor and even aryl chlorides, affording the corresponding biaryl compounds in good to excellent yields under visible light irradiation. This study shows that visible light irradiation can drive the cross‐coupling reactions on the Pd (II) [PTATAD] @ TiO2 under mild reaction conditions (27–30 °C) and no additional additives such as cocatalysts or phosphine ligands. So, we propose that the improved photoactivity predominantly benefits from the synergistic effects of Pd (II) amine‐terminated poly (triazine‐triamine) dendrimer on TiO2 nanoparticles that cause efficient separation and photogenerated electron–hole pairs and photoredox capability of nanocatalyst which all of these advantages due to the tuning of band gap of catalyst in the visible light region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号