首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   16篇
  国内免费   1篇
化学   243篇
晶体学   10篇
力学   5篇
数学   30篇
物理学   36篇
  2024年   1篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   8篇
  2019年   7篇
  2018年   1篇
  2017年   6篇
  2016年   10篇
  2015年   12篇
  2014年   14篇
  2013年   11篇
  2012年   29篇
  2011年   45篇
  2010年   21篇
  2009年   18篇
  2008年   31篇
  2007年   17篇
  2006年   15篇
  2005年   13篇
  2004年   7篇
  2003年   7篇
  2002年   6篇
  2001年   3篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1988年   1篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1969年   1篇
  1959年   1篇
  1931年   1篇
  1924年   1篇
  1921年   1篇
  1916年   1篇
  1915年   1篇
  1914年   1篇
  1909年   1篇
  1908年   2篇
  1906年   1篇
  1904年   2篇
  1903年   2篇
  1880年   1篇
  1877年   2篇
  1858年   1篇
排序方式: 共有324条查询结果,搜索用时 15 毫秒
11.
A combination of self‐complementary hydrogen bonding and metal–ligand interactions allows stereocontrol in the self‐assembly of prochiral ligand scaffolds. A unique, non‐tetrahedral M4L6 structure is observed upon multicomponent self‐assembly of 2,7‐diaminofluorenol with 2‐formylpyridine and Fe(ClO4)2. The stereochemical outcome of the assembly is controlled by self‐complementary hydrogen bonding between both individual ligands and a suitably sized counterion as template. This hydrogen‐bonding‐mediated stereoselective metal–ligand assembly allows the controlled formation of nonsymmetric discrete cage structures from previously unexploited ligand scaffolds.  相似文献   
12.
Absolute rate coefficients for the reaction between the important environmental free radical oxidant NO3. and a series of N‐ and C‐protected amino acids, di‐ and tripeptides were determined using 355 nm laser flash photolysis of cerium(IV) ammonium nitrate in the presence of the respective substrates in acetonitrile at 298±1 K. Through combination with computational studies it was revealed that the reaction with acyclic aliphatic amino acids proceeds through hydrogen abstraction from the α‐carbon, which is associated with a rate coefficient of about 1.8×106 m ?1 s?1 per abstractable hydrogen atom. The considerably faster reaction with phenylalanine [k=(1.1±0.1)×107 m ?1 s?1] is indicative for a mechanism involving electron transfer. An unprecedented amplification of the rate coefficient by a factor of 7–20 was found with di‐ and tripeptides that contain more than one phenylalanine residue. This suggests a synergistic effect between two aromatic rings in close vicinity, which makes such peptide sequences highly vulnerable to oxidative damage by this major environmental pollutant.  相似文献   
13.
Two‐dimensional zeolite nanosheets that do not contain any organic structure‐directing agents were prepared from a multilamellar MFI (ML‐MFI) zeolite. ML‐MFI was first exfoliated by melt compounding and then detemplated by treatment with a mixture of H2SO4 and H2O2 (piranha solution). The obtained OSDA‐free MFI nanosheets disperse well in water and can be used for coating applications. Deposits made on porous polybenzimidazole (PBI) supports by simple filtration of these suspensions exhibit an n‐butane/isobutane selectivity of 5.4, with an n‐butane permeance of 3.5×10?7 mol m?2 s?1 Pa?1 (ca. 1000 GPU).  相似文献   
14.
Treatment of cis-[RuCl2(dppm)2] (dppm = bis(diphenylphosphino)methane) with dithiocarbamates, NaS2CNR2 (R = Me, Et) and [H2NC5H10][S2CNC5H10], yields cations [Ru(S2CNR2)2(dppm)2](+) and [Ru(S2CNC5H10)2(dppm)2](+), respectively. The zwitterions S2CNC4H8NHR (R = Me, Et) react with the same metal complex in the presence of base to yield [Ru(S2CNC4H8NR)(dppm)2](+). Piperazine or 2,6-dimethylpiperazine reacts with carbon disulfide to give the zwitterionic dithiocarbamate salts H2NC4H6(R2-3,5)NCS2 (R = H; R = Me), which form the complexes [Ru(S2CNC4H6(R2-3,5)NH2)(dppm)2](2+) on reaction with cis-[RuCl2(dppm)2]. Sequential treatment of [Ru(S2CNC4H8NH2)(dppm)2](2+) with triethylamine and carbon disulfide forms the versatile metalla-dithiocarbamate complex [Ru(S2CNC4H8NCS2)(dppm)2] which reacts readily with cis-[RuCl2(dppm)2] to yield [{Ru(dppm)2}2(S2CNC4H8NCS2)]. Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with [Os(CH=CHC6H4Me-4)Cl(CO)(BTD)(PPh3)2] (BTD = 2,1,3-benzothiadiazole), [Pd(C6H4CH2NMe2)Cl]2, [PtCl2(PEt3)2], and [NiCl2(dppp)] (dppp = 1,3-bis(diphenylphosphino)propane) results in the heterobimetallic complexes [(dppm)2Ru(S2CNC4H8NCS2)ML(n))](m+) (ML(n) = Os(CH=CHC6H4Me-4)(CO)(PPh3)2](+), m = 1; ML(n) = Pd(C,N-C6H4CH2NMe2), m = 1; ML(n) = Pt(PEt3)2, m = 2; ML(n) = Ni(dppp), m = 2). Reaction of [NiCl2(dppp)] with H2NC4H8NCS2 yields the structurally characterized compound, [Ni(S2CNC4H8NH2)(dppp)](2+), which reacts with base, CS2, and cis-[RuCl2(dppm)2] to provide an alternative route to [(dppm)2Ru(S2CNC4H8NCS2)Ni(dppp)](+). A further metalla-dithiocarbamate based on cobalt, [CpCo(S2CNC4H8NH2)(PPh3)](2+), is formed by treatment of CpCoI2(CO) with S2CNC4H8NH2 followed by PPh3. Further reaction with NEt3, CS2, and cis-[RuCl2(dppm)2] yields [(Ph3P)CpCo(S2CNC4H8NCS2)Ru(dppm)2](2+). Heterotrimetallic species of the form [{(dppm)2Ru(S2CNC4H8NCS2)}2M](2+) result from the reaction of [Ru(S2CNC4H8NCS2)(dppm)2] and M(OAc)2 (where M = Ni, Cu, Zn). Reaction of [Ru(S2CNC4H8NCS2)(dppm)2] with Co(acac)3 and LaCl3 results in the formation of the compounds [{(dppm)2Ru(S2CNC4H8NCS2)}3Co](3+) and [{(dppm)2Ru(S2CNC4H8NCS2)}3La](3+), respectively. The electrochemical behavior of selected examples is also reported.  相似文献   
15.
The crystal structure of the complex [{Fe(bt)(NCS)(2)}(2)bpym] (1) (bt=2,2'-bithiazoline, bpym=2,2'-bipyrimidine) has been solved at 293, 240, 175 and 30 K. At all four temperatures the crystal remains in the P space group with a=8.7601(17), b=9.450(2), c=12.089(3) A, alpha=72.77(2), beta=79.150(19), gamma=66.392(18) degrees , V=873.1(4) Angstrom(3) (data for 293 K structure). The structure consists of centrosymmetric dinuclear units in which each iron(II) atom is coordinated by two NCS(-) ions in the cis position and two nitrogen atoms of the bridging bpym ligand, with the remaining positions occupied by the peripheral bt ligand. The iron atom is in a severely distorted octahedral FeN(6) environment. The average Fe--N bond length of 2.15(9) Angstrom indicates that compound 1 is in the high-spin state (HS-HS) at 293 K. Crystal structure determinations at 240, 175 and 30 K gave a cell comparable to that seen at 293 K, but reduced in volume. At 30 K, the average Fe--N distance is 1.958(4) Angstrom, showing that the structure is clearly low spin (LS-LS). At 175 K the average Fe--N bond length of 2.052(11) Angstrom suggests that there is an intermediate phase. M?ssbauer investigations of the light-induced excited spin state trapping (LIESST) effect (lambda=514 nm, 25 mW cm(-2)) in 1 (4.2 K, H(ext)=50 kOe) show that the excited spin states correspond to the HS-HS and HS-LS pairs. The dynamics of the relaxation of the photoexcited states studied at 4.2 K and H(ext)=50 kOe demonstrate that HS-HS pairs revert with time to both HS-LS and LS-LS configurations. The HS-LS photoexcited pairs relax with time back to the ground LS-LS configuration. Complex [{Fe(0.15)Zn(0.85)(bt)(NCS)(2)}(2)bpym] (2) exhibits a continuous spin transition centred around 158 K in contrast to the two-step transition observed for 1. The different spin-crossover behaviour observed for 2 is due to the decrease of cooperativity (intermolecular interactions) imposed by the matrix of Zn(II) ions. This clearly demonstrates the role of the intermolecular interactions in the stabilization of the HS-LS intermediate state in 1.  相似文献   
16.
[reaction: see text] The room-temperature radical addition of sodium hypophosphite to terminal alkynes produces the previously unknown 1-alkyl-1,1-bis-H-phosphinates in moderate yield. The reaction is initiated by R3B and air and proceeds under mild conditions in an open container. The bissodium salts precipitate spontaneously from the reaction mixtures, thus providing a simple purification procedure and the opportunity for multigram synthesis. The 1,1-bis-H-phosphinate products are novel precursors of the biologically important 1,1-bisphosphonates.  相似文献   
17.
The reactions of Me(2)NH·BH(3) with cationic Rh(III) and Ir(III) complexes have been shown to generate the 18-electron aminoborane adduct [Ir(IMes)(2)(H)(2){κ(2)-H(2)BNMe(2))](+) and the remarkable 14-electron aminoboryl complex [Rh(IMes)(2)(H)-{B(H)NMe(2))](+). Neutron diffraction studies have been used for the first time to define H-atom locations in metal complexes of this type formed under catalytic conditions.  相似文献   
18.
Laurefurenynes C–F are four natural products isolated from Laurencia species whose structures were originally determined on the basis of extensive nuclear magnetic resonance experiments. On the basis of a proposed biogenesis, involving a tricyclic oxonium ion as a key intermediate, we have reassigned the structures of these four natural products and synthesized the four reassigned structures using a biomimetic approach demonstrating that they are the actual structures of the natural products. In addition, we have developed a synthesis of the enantiomers of the natural products laurencin and deacetyllaurencin from the enantiomer of (E)-laurefucin using an unusual retrobiomimetic strategy. All of these syntheses have been enabled by the use of tricyclic oxonium ions as pivotal synthetic intermediates.

The synthesis and structural reassignment of laurefurenynes C–F has been achieved, with the new structures fitting with a proposed biosynthesis. Also reported is the synthesis of ent-laurencin and ent-deacetyllaurencin via a retrobiomimetic approach.  相似文献   
19.
Positioned at the C-terminus of many eukaryotic proteins, the glycosylphosphatidylinositol (GPI) anchor is a posttranslational modification that anchors the modified proteins in the outer leaflet of the plasma membrane. GPI-anchored proteins play vital roles in signal transduction, the vertebrate immune response, and the pathobiology of trypanosomal parasites. While many GPI-anchored proteins have been characterized, the biological functions of the GPI anchor have yet to be elucidated at a molecular level. We synthesized a series of GPI-protein analogues bearing modified anchor structures that were designed to dissect the contribution of various glycan components to the GPI-protein's membrane behavior. These anchor analogues were similar in length to native GPI anchors and included mimics of the native structure's three domains. A combination of expressed protein ligation and native chemical ligation was used to attach these analogues to the green fluorescent protein (GFP). These modified GFPs were incorporated in supported lipid bilayers, and their mobilities were analyzed using fluorescence correlation spectroscopy. The data from these experiments suggest that the GPI anchor is more than a simple membrane-anchoring device; it also may prevent transient interactions between the attached protein and the underlying lipid bilayer, thereby permitting rapid diffusion in the bilayer. The ability to generate chemically defined analogues of GPI-anchored proteins is an important step toward elucidating the molecular functions of this interesting post-translational modification.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号