首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   788篇
  免费   39篇
  国内免费   1篇
化学   678篇
晶体学   8篇
力学   4篇
数学   62篇
物理学   76篇
  2023年   8篇
  2022年   11篇
  2021年   16篇
  2020年   34篇
  2019年   33篇
  2018年   22篇
  2017年   19篇
  2016年   41篇
  2015年   23篇
  2014年   23篇
  2013年   36篇
  2012年   94篇
  2011年   81篇
  2010年   41篇
  2009年   37篇
  2008年   52篇
  2007年   53篇
  2006年   52篇
  2005年   45篇
  2004年   29篇
  2003年   28篇
  2002年   16篇
  2001年   4篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   6篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   3篇
  1988年   2篇
  1987年   2篇
  1984年   1篇
  1983年   1篇
排序方式: 共有828条查询结果,搜索用时 109 毫秒
141.
This work uses linear and looped RGDfV sequences attached to the surface of small (1.8 nm in diameter) gold nanoparticles (AuNPs) to enhance the radiosensitizating effects of Cilengitide, a cyclic RGDf (NMe)V pentapeptide that targets αvβ3 integrin which is overexpressed in certain cancers. Following synthesis and purification, the AuNPs were evaluated in vitro against HUVEC, H460, and MCF7 cells in clonogenic assays using a 137Cs irradiator. Untargeted AuNPs induced no significant dose enhancement factors (DEFs) in any of the cell types when compared to radiation treatment alone, whereas all evaluated AuNPs functionalized with targeting peptides performed at least as well as controls (irradiation after Cilengitide treatment). The observed DEFs also suggest that cyclizing the linear peptides into more spatially constrained, looped structures may facilitate target binding. These greater dose enhancements merit future in vivo studies of drug-AuNP conjugates to assess the ability of the nanostructures to provide an improved therapeutic benefit over treatment with drug candidates and radiation alone.
Graphical abstract ?
  相似文献   
142.
The synthesis of a new class of fluorescent carbon nanomaterials, carbon‐dot‐decorated nanodiamonds (CDD‐ND), is reported. These CDD‐NDs are produced by specific acid treatment of detonation soot, forming tiny rounded sp2 carbon species (carbon dots), 1–2 atomic layers thick and 1–2 nm in size, covalently attached to the surface of the detonation diamond nanoparticles. A combination of nanodiamonds bonded with a graphitic phase as a starting material and the application of graphite intercalated acids for oxidation of the graphitic carbon is necessary for the successful production of CDD‐ND. The CDD‐ND photoluminescence (PL) is stable, 20 times more intense than the intrinsic PL of well‐purified NDs and can be tailored by changing the oxidation process parameters. Carbon‐dot‐decorated DNDs are shown to be excellent probes for bioimaging applications and inexpensive additives for PL nanocomposites.  相似文献   
143.
Polycrystalline microspheres and single-crystalline microplates of Bi(2)WO(6) have been synthesized by ultrasonic spray pyrolysis. Herein, these materials are evaluated as photocatalysts for the visible light mediated degradation of rhodamine B, a model pollutant, and the results compared to those obtained with Bi(2)WO(6) prepared by traditional methods. The microplates, which displayed the best crystallinity and highest surface area, were anticipated to facilitate the greatest rate of dye photodegradation. However, the polycrystalline microspheres outperformed both the Bi(2)WO(6) microplates and traditional samples. To understand the origin of this result, the local and macroscale structures of the Bi(2)WO(6) samples were comprehensively characterized by spectroscopy techniques (diffuse reflectance, fluorescence, Raman, and X-ray photoelectron spectroscopy) as well as electron microscopy and diffraction. This analysis found that the enhanced performance of the Bi(2)WO(6) microspheres results from the expression of a hydrophilic surface, a low concentration of point defects, and a moderate surface area. This finding highlights the significant role synthesis plays in imparting structure and functionality to solid materials.  相似文献   
144.
The antimicrobial and cytotoxic activities of the dichloromethane, ethyl acetate and butanolic fractions from the leaves, twigs and stem bark of Scutia buxifolia were evaluated using the broth microdilution method and the brine shrimp lethality method, respectively. Phytochemical analysis was performed by thin layer chromatography (TLC) and high-performance liquid chromatography (HPLC). The antimicrobial results demonstrated that the strongest effect occurred with the butanol fraction from the twigs and the ethyl acetate fraction from the stem bark against Saccharomyces cerevisiae (minimal inhibitory concentration; MIC?=?62.5?μg?mL(-1)), whereas the ethyl acetate and butanolic fractions from the twigs and stem bark were effective against Pseudomonas aeruginosa and Staphylococcus aureus, with MIC values ranging from 125 to 500?μg?mL(-1). LD(50) values varied from 50.00?±?0.22 to 82.23?±?0.34?μg?mL(-1). Quercetin, quercitrin, isoquercitrin and rutin were identified by HPLC and may be partially responsible for the antimicrobial activities observed. This study reports for the first time the antimicrobial and cytotoxic activities of S. buxifolia leaves, twigs and stem bark.  相似文献   
145.
The photophysics and morphology of thin films of N,N-bis(2,6-diisopropylphenyl)perylene-3,4:9,10-bis(dicarboximide) (1) and the 1,7-diphenyl (2) and 1,7-bis(3,5-di-tert-butylphenyl) (3) derivatives blended with 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) were studied for their potential use as photoactive layers in organic photovoltaic (OPV) devices. Increasing the steric bulk of the 1,7-substituents of the perylene-3,4:9,10-bis(dicarboximide) (PDI) impedes aggregation in the solid state. Film characterization data using both atomic force microscopy and X-ray diffraction showed that decreasing the PDI aggregation by increasing the steric bulk in the order 1 < 2 < 3 correlates with a decrease in the density/size of crystalline TIPS-Pn domains. Transient absorption spectroscopy was performed on ~100 nm solution-processed TIPS-Pn:PDI blend films to characterize the charge separation dynamics. These results showed that selective excitation of the TIPS-Pn results in competition between ultrafast singlet fission ((1*)TIPS-Pn + TIPS-Pn → 2 (3*)TIPS-Pn) and charge transfer from (1*)TIPS-Pn to PDIs 1-3. As the blend films become more homogeneous across the series TIPS-Pn:PDI 1 → 2 → 3, charge separation becomes competitive with singlet fission. Ultrafast charge separation forms the geminate radical ion pair state (1)(TIPS-Pn(+?)-PDI(-?)) that undergoes radical pair intersystem crossing to form (3)(TIPS-Pn(+?)-PDI(-?)), which then undergoes charge recombination to yield either (3*)PDI or (3*)TIPS-Pn. Energy transfer from (3*)PDI to TIPS-Pn also yields (3*)TIPS-Pn. These results show that multiple pathways produce the (3*)TIPS-Pn state, so that OPV design strategies based on this system must utilize this triplet state for charge separation.  相似文献   
146.
Zinc oxide is considered as a very promising material for optoelectronics. However, to date, the difficulty in producing stable p-type ZnO is a bottleneck, which hinders the advent of ZnO-based devices. In that context, nitrogen-doped zinc oxide receives much attention. However, numerous reviews report the controversial character of p-type conductivity in N-doped ZnO, and recent theoretical contributions explain that N-doping alone cannot lead to p-typeness in Zn-rich ZnO. We report here that the ammonolysis at low temperature of ZnO(2) yields pure wurtzite-type N-doped ZnO nanoparticles with an extraordinarily large amount of Zn vacancies (up to 20%). Electrochemical and transient spectroscopy studies demonstrate that these Zn-poor nanoparticles exhibit a p-type conductivity that is stable over more than 2 years under ambient conditions.  相似文献   
147.
Social structure of Facebook networks   总被引:1,自引:0,他引:1  
We study the social structure of Facebook “friendship” networks at one hundred American colleges and universities at a single point in time, and we examine the roles of user attributes–gender, class year, major, high school, and residence–at these institutions. We investigate the influence of common attributes at the dyad level in terms of assortativity coefficients and regression models. We then examine larger-scale groupings by detecting communities algorithmically and comparing them to network partitions based on user characteristics. We thereby examine the relative importance of different characteristics at different institutions, finding for example that common high school is more important to the social organization of large institutions and that the importance of common major varies significantly between institutions. Our calculations illustrate how microscopic and macroscopic perspectives give complementary insights on the social organization at universities and suggest future studies to investigate such phenomena further.  相似文献   
148.
The fundamental interactions of dimethyl methylphosphonate (DMMP) and dimethyl chlorophosphate (DMCP) on amorphous silica nanoparticles have been investigated with transmission infrared spectroscopy and temperature-programmed desorption (TPD). DMMP and DMCP both adsorb molecularly to silica through the formation of hydrogen bonds between isolated silanols and the phosphoryl oxygen of the adsorbate. The magnitude of the shift of the ν(OH) mode upon simulant adsorption is correlated to the adsorption strength. The activation energies for desorption for a single DMMP or DMCP molecule from amorphous silica varied with coverage. In the limit of zero coverage, after the effects of defects were excluded, the activation energies were 54.5 ± 0.3 and 48.4 ± 1.0 kJ/mol for DMMP and DMCP, respectively.  相似文献   
149.
150.
A three-dimensional surface enhanced Raman scattering (SERS)/plasmonic sensing platform based on plasma-enabled, catalyst-free, few-layer vertical graphenes decorated with self-organized Au nanoparticle arrays is demonstrated. This platform is viable for multiple species detection and overcomes several limitations of two-dimensional sensors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号