首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15331篇
  免费   641篇
  国内免费   45篇
化学   10408篇
晶体学   237篇
力学   479篇
综合类   2篇
数学   1172篇
物理学   3719篇
  2024年   48篇
  2023年   169篇
  2022年   402篇
  2021年   453篇
  2020年   480篇
  2019年   543篇
  2018年   509篇
  2017年   480篇
  2016年   694篇
  2015年   484篇
  2014年   776篇
  2013年   1295篇
  2012年   1160篇
  2011年   1217篇
  2010年   795篇
  2009年   623篇
  2008年   765篇
  2007年   750篇
  2006年   597篇
  2005年   526篇
  2004年   402篇
  2003年   334篇
  2002年   273篇
  2001年   166篇
  2000年   142篇
  1999年   111篇
  1998年   77篇
  1997年   103篇
  1996年   98篇
  1995年   79篇
  1994年   75篇
  1993年   107篇
  1992年   102篇
  1991年   83篇
  1990年   69篇
  1989年   74篇
  1988年   51篇
  1987年   51篇
  1986年   47篇
  1985年   70篇
  1984年   69篇
  1983年   58篇
  1982年   52篇
  1981年   44篇
  1980年   48篇
  1979年   66篇
  1978年   52篇
  1977年   59篇
  1976年   47篇
  1975年   36篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
821.

Enantioselective analysis or separation is very essential for improved therapeutic effects of drugs as the pure enantiomeric drug formulations display potential benefits over racemates. In this work, we carried out (i) the synthesis of a nanocomposite of β-cyclodextrin and 3D graphene (G/β-CD NC), and (ii) its application for the detection of fluoxetine enantiomers [(RS)-FLX)] using a thin-layer chromatographic method. The synthesized nanocomposite was introduced into silica gel slurry while preparation of thin-layer plates. The separation conditions were optimized by altering pH, temperature, and mobile phase composition. The method is simple and easy to be optimized, and it can therefore be exploited to assess and monitor routine work of enantiomeric purity of drug enantiomers. The average precision (as measured by RSD) was in the region of 1.35‒1.65% for the enantiomers of (RS)-FLX. The measured limit of detection and limit of quantification for (RS)-FLX enantiomers were 1.8 and 5.4 mg mL‒1, respectively.

  相似文献   
822.
Polyimide nanocomposites having low-k and UV shielding properties have been developed using fluorine functionalized graphene oxide and bis(quinoline amine) based polyimide. The polyimide was synthesized using bis(quinoline amine) and pyromellitic dianhydride at appropriate experimental conditions, and its molecular structure was confirmed through various spectral analysis such as FTIR and NMR. The polyimide (PI) composites were prepared using bis(quinoline amine), pyromellitic dianhydride, and separately filled with 1, 5, 10 wt% of fluorinated graphene oxide (FGO) through in situ polymerization. The polymer composites were characterized using thermo gravimetric analysis (TGA), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). In addition, the water contact angle, dielectric behavior, and UV–Vis shielding behavior of FGO/PI composites were evaluated. The value of the water contact angle of the polyimide was increased with increment of FGO in the polyimide matrix. The highest water contact angle of polyimide composites observed 108° was obtained for 15 wt% FGO reinforced polyimide composite. The value of the dielectric constant for neat, 1, 5, and 15 wt% FGO reinforced polyimide composites was obtained as 4.5, 3.7, 2.6, and 2.0, respectively. It is also observed from by UV–Vis spectroscopy analysis that the FGO reinforced polyimide composites have good UV shielding behavior.  相似文献   
823.
Russian Journal of Electrochemistry - The effect of temperature and discharge rate on the discharge capacity of nickel–cadmium (Ni?Cd) cell is investigated quantitatively. Ni–Cd...  相似文献   
824.
Journal of Solid State Electrochemistry - The development of materials with high active surface area/surface modification is of great interest in electrochemistry due to their widespread...  相似文献   
825.
4-Hydroxy isoleucine is one of the potent hypoglycemic active constituents of fenugreek seeds. A method capable of reducing biological interferences is required for bioavailability studies. An isocratic separation of 4-hydroxy isoleucine from endogenous interferences was achieved in ZIC-cHILIC column using 0.1% formic acid in water and acetonitrile (20:80, % v/v) pumped at 0.5 ml/min. Quantification was performed in multiple reaction monitoring mode using the transitions of m/z 148.1→102.1 and m/z 276.1→142.2 for 4-hydroxy isoleucine and homatropine (as internal standard), respectively. After full method validation, 4-hydroxy isoleucine levels in human plasma and commercial fenugreek formulations were determined. This method showed good linearity in the range of 50–2000 ng/mL. Intra- and interday accuracies were in the range of 90.64–109.0% and precision was <4.82% CV. The mean (SD) plasma concentration of 4-hydroxy isoleucine in healthy individuals at 2 h after oral administration of fenugreek tablet was found to be 1590 (260) ng/mL. Half of marketed formulations were found to contain <0.05% of 4-hydroxy isoleucine content. We developed a rapid hydrophilic interaction liquid chromatography–tandem mass spectrometry method for analysis of 4-hydroxy isoleucine in human plasma. This method can be applied directly to conduct the clinical pharmacokinetics studies of 4-hydroxy isoleucine in human population.  相似文献   
826.
Herein, we report a facile method for synthesizing MoCo-layered double hydroxide (LDH) nanosheets employing Prussian blue analog (PBA) as the precursor. The introduction of Mo in Co-LDH modulates the electronic structure, increases the number of active sites and electrochemical surface area to improve the hydrogen evolution, oxygen evolution, and overall water splitting activity. As a result, PBA-derived Mo0.25Co0.75-LDH nanosheets demonstrated 10 mA cm?2 current density at only 220 mV and 115 mV overpotentials for OER and HER, respectively. The overall water splitting was attained at 1.52 V cell voltage for 10 mA cm?2 current density.  相似文献   
827.
Controllable tailoring of metal-free/carbon-based nanostructures tends an encouraging way to enhance the bifunctional activity of electrodes, but a great challenge owing to the sluggish kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). Herein, a facile tempted-defects assisted fractionation strategy is presented to synthesize N, S, and O tri-doped metal-free catalyst (DE-TDAP). Due to this effective tempted-defects and heteroatoms interlinking in DE-TDAP, it delivers the lowest overpotential toward both the OER (346 mV) and HER (154 mV) at 10 mA cm?2. Remarkably, the DE-TDAP-electrode carries only a cell voltage of 1.81 V at 10 mA cm?2 for overall water splitting and long-term stability. Considerably, the density functional theory (DFT) calculation exposes that the tailored-defects in tri-doped interlinking could enhance bifunctional catalytic performance devising from lower Gibbs free energy of OER/HER intermediates on active sites. This struggle henceforth provides a perceptive understanding of the synergetic principles of heteroatom-interlinking-tailoring nanostructures in water splitting.  相似文献   
828.
Over the years, eco-friendly raw biomass is being investigated to develop novel green monomer and oligomer components for sustainable polymer materials synthesis. The use of naturally obtained biomass can reduce the dependence on petrochemical suppliers and the impact of petroleum prices. Polymer materials obtained from biomass are a competitive alternative comparing with those made from petrochemicals. Domestically and industrially used vegetable oil derivatives are considered widely available, while cellulose derivatives are the most abundant natural polymers. Biobased acrylic polymers developed from vegetable oils and cellulose are very popular nowadays. Using acrylic derivatives of vegetable oils and cellulose as naturally obtained materials leads to long-lasting biopolymers with a wide range of high exploitation properties and applications. The characteristics of vegetable oil- and cellulose-based acrylate resins of high-biorenewable carbon content are suitable for industrial application, while their role is still underestimated. A brief analysis of biomass-derived biopolymer resin compositions, properties, and applications is critically outlined herein.  相似文献   
829.
Metal-organic coordination polymers (CP) have attracted the scientific attention for electrochemical water oxidation as it has the similar coordination structure like natural photosynthetic coordinated complex. However, the harsh synthesis conditions and bulky nature pose a major challenge in the field of catalysis. Herein, 3–5 nm CP particles synthesized at room temperature using aqueous solutions of Ni2+/Cu2+ and 2,5-dihydroxyterepthalic acid as precursor were applied for alkaline water and urea electrolysis. The overpotential required is only 300 mV at 10 mA cm−2 by Nano-Ni CP for water oxidation, with turnover frequency (TOF) of 21.4 s−1 which is around 8 times higher than its bulk-counterpart. Overall water and urea splitting were achieved with Nano-Cu (−) ∥ Nano-Ni (+) couple on Ni foam at 1.69 and 1.52 V to achieve 10 mA cm−2, respectively. High electrochemical surface area (ECSA), high TOF, and enhanced mass diffusion are found to be the key parameters responsible for the state-of-the-art water and urea splitting performances of nano-CPs as compared to their bulk counterparts.  相似文献   
830.
Computational drug design is increasingly becoming important with new and unforeseen diseases like COVID-19. In this study, we present a new computational de novo drug design and repurposing method and applied it to find plausible drug candidates for the receptor binding domain (RBD) of SARS-CoV-2 (COVID-19). Our study comprises three steps: atom-by-atom generation of new molecules around a receptor, structural similarity mapping to existing approved and investigational drugs, and validation of their binding strengths to the viral spike proteins based on rigorous all-atom, explicit-water well-tempered metadynamics free energy calculations. By choosing the receptor binding domain of the viral spike protein, we showed that some of our new molecules and some of the repurposable drugs have stronger binding to RBD than hACE2. To validate our approach, we also calculated the free energy of hACE2 and RBD, and found it to be in an excellent agreement with experiments. These pool of drugs will allow strategic repurposing against COVID-19 for a particular prevailing conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号