首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   12篇
  国内免费   3篇
化学   303篇
晶体学   1篇
力学   3篇
综合类   1篇
数学   21篇
物理学   70篇
  2023年   5篇
  2022年   34篇
  2021年   28篇
  2020年   11篇
  2019年   15篇
  2018年   15篇
  2017年   11篇
  2016年   20篇
  2015年   6篇
  2014年   13篇
  2013年   23篇
  2012年   28篇
  2011年   36篇
  2010年   20篇
  2009年   9篇
  2008年   8篇
  2007年   8篇
  2006年   10篇
  2005年   13篇
  2004年   10篇
  2003年   15篇
  2002年   9篇
  2001年   7篇
  2000年   2篇
  1999年   6篇
  1998年   5篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1991年   2篇
  1990年   5篇
  1984年   1篇
  1982年   1篇
  1981年   3篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1956年   1篇
  1955年   1篇
  1903年   1篇
排序方式: 共有399条查询结果,搜索用时 15 毫秒
161.

The activity concentrations of 226Ra, 228Ra and 222Rn were measured in 87 groundwater samples to estimate the activity concentrations of these radionuclides and health impact due to intake of these radionuclides in groundwater of Jordan. The mean activity concentrations of 226Ra, 228Ra and 222Rn in groundwater were found to be 0.293?±?0.005 Bq L?1, 0.508?±?0.009 Bq L?1 and 58.829?±?8.824 Bq L?1, respectively. They give a mean annual effective dose of 0.481 mSv with mean lifetime risk of 24.599?×?10?4, exceeding the admissible limit of 10?4. Most of the received annual effective dose (59.15% of the total) is attributed to 228Ra.

  相似文献   
162.
The first greenest methodology for the synthesis of 2,3-dihydro-1H-perimidines on water is described. 1,8-Diamino naphthalene was reacted with different types of aldehydes at room temperature to furnish the product in moderate to excellent yields in 30 min. A multi-gram scale reaction is also performed to ensure the scalability of the reaction.  相似文献   
163.
Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly infectious zoonotic virus first reported into the human population in September 2012 on the Arabian Peninsula. The virus causes severe and often lethal respiratory illness in humans with an unusually high fatality rate. The N-terminal domain (NTD) of receptor-binding S1 subunit of coronavirus spike (S) proteins can recognize a variety of host protein and mediates entry into human host cells. Blocking the entry by targeting the S1-NTD of the virus can facilitate the development of effective antiviral drug candidates against the pathogen. Therefore, the study has been designed to identify effective antiviral drug candidates against the MERS-CoV by targeting S1-NTD. Initially, a structure-based pharmacophore model (SBPM) to the active site (AS) cavity of the S1-NTD has been generated, followed by pharmacophore-based virtual screening of 11,295 natural compounds. Hits generated through the pharmacophore-based virtual screening have re-ranked by molecular docking and further evaluated through the ADMET properties. The compounds with the best ADME and toxicity properties have been retrieved, and a quantum mechanical (QM) based density-functional theory (DFT) has been performed to optimize the geometry of the selected compounds. Three optimized natural compounds, namely Taiwanhomoflavone B (Amb23604132), 2,3-Dihydrohinokiflavone (Amb23604659), and Sophoricoside (Amb1153724), have exhibited substantial docking energy >−9.00 kcal/mol, where analysis of frontier molecular orbital (FMO) theory found the low chemical reactivity correspondence to the bioactivity of the compounds. Molecular dynamics (MD) simulation confirmed the stability of the selected natural compound to the binding site of the protein. Additionally, molecular mechanics generalized born surface area (MM/GBSA) predicted the good value of binding free energies (ΔG bind) of the compounds to the desired protein. Convincingly, all the results support the potentiality of the selected compounds as natural antiviral candidates against the MERS-CoV S1-NTD.  相似文献   
164.
Four new drug-based oxidovanadium (IV) complexes were synthesized and characterized by various spectral techniques, including molar conductance, magnetic measurements, and thermogravimetric analysis. Moreover, optimal structures geometry for all syntheses was obtained by the Gaussian09 program via the DFT/B3LYP method and showed that all of the metal complexes adopted a square-pyramidal structure. The essential parameters, electrophilicity (ω) value and expression for the maximum charge that an electrophile molecule may accept (ΔNmax) showed the practical biological potency of [VO(CTZ)2] 2H2O. The complexes were also evaluated for their propensity to bind to DNA through UV–vis absorption titration. The result revealed a high binding ability of the [VO(CTZ)2] 2H2O complex with Kb = 1.40 × 10⁶ M−1. Furthermore, molecular docking was carried out to study the behavior of the VO (II) complexes towards colon cancer cell (3IG7) protein. A quantitative structure–activity relationship (QSAR) study was also implemented for the newly synthesized compounds. The results of validation indicate that the generated QSAR model possessed a high predictive power (R2 = 0.97). Within the investigated series, the [VO(CTZ)2] 2H2O complex showed the greatest potential the most selective compound comparing to the stander chemotherapy drug.  相似文献   
165.
Alpha-amylase (α-amylase) is a key player in the management of diabetes and its related complications. This study was intended to have an insight into the binding of caffeic acid and coumaric acid with α-amylase and analyze the effect of these compounds on the formation of advanced glycation end-products (AGEs). Fluorescence quenching studies suggested that both the compounds showed an appreciable binding affinity towards α-amylase. The evaluation of thermodynamic parameters (ΔH and ΔS) suggested that the α-amylase-caffeic/coumaric acid complex formation is driven by van der Waals force and hydrogen bonding, and thus complexation process is seemingly specific. Moreover, glycation and oxidation studies were also performed to explore the multitarget to manage diabetes complications. Caffeic and coumaric acid both inhibited fructosamine content and AGE fluorescence, suggesting their role in the inhibition of early and advanced glycation end-products (AGEs). However, the glycation inhibitory potential of caffeic acid was more in comparison to p-coumaric acid. This high antiglycative potential can be attributed to its additional –OH group and high antioxidant activity. There was a significant recovery of 84.5% in free thiol groups in the presence of caffeic acid, while coumaric attenuated the slow recovery of 29.4% of thiol groups. In vitro studies were further entrenched by in silico studies. Molecular docking studies revealed that caffeic acid formed six hydrogen bonds (Trp 59, Gln 63, Arg 195, Arg 195, Asp 197 and Asp 197) while coumaric acid formed four H-bonds with Trp 59, Gln 63, Arg 195 and Asp 300. Our studies highlighted the role of hydrogen bonding, and the ligands such as caffeic or coumaric acid could be exploited to design antidiabetic drugs.  相似文献   
166.
167.
Carbon dioxide (CO2)‐responsive polymers have been gaining considerable interest because of their reactions with CO2, giving rise to gas‐switchable properties, which can easily be reversed by mild heating or purging with inert gases. Herein, the synthesis of a series of side‐chain amino acids (alanine, leucine, isoleucine, phenylalanine, tryptophan) appending poly(meth)acrylates carrying primary amine (? NH2) groups via reversible addition‐fragmentation chain transfer (RAFT) polymerization method was reported. It was found that alanine, leucine, isoleucine containing polymers displayed solubility–insolubility transition behavior and their associated property changes (solution transmittance, electrical conductivity, pH, zeta potential, and hydrodynamic diameter) in water upon alternate bubbling of CO2/N2 at room temperature. Among the three CO2‐sensitive polymers only leucine based macromolecule was further chain extended with a thermoresponsive motif, di(ethylene glycol) methyl ether methacrylate (DEGMMA), via RAFT polymerization. CO2‐tunable lower critical solution temperature and self‐assembling behavior of the diblock copolymer was carefully examined by UV–vis, 1H NMR spectroscopy, dynamic light scattering (DLS), and field emission‐scanning electron microscopy (FE‐SEM) to establish dual thermo and gas‐tunable flip–flop micellizaion from the as‐synthesized block copolymer. Formation of polyammonium methacrylate bearing bicarbonate as counter anion is responsible for pendant primary amine containing polymer induced CO2‐responsiveness. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2794–2803  相似文献   
168.
Cobalt(II) complexes with 2-aminoacetophenone thiosemicarbazone and three N(4)-substituted thiosemicarbazones have been prepared in EtOH solution and characterized by physical and spectral methods. I.r. and electronic spectra of the thiosemicarbazones and their complexes, along with physical properties of the complexes, have been obtained. The 2-aminoacetophenone thiosemicarbazones coordinate both as neutral and anionic ligands via the thiosemicarbazone moiety's imine nitrogen and thione/thiolato sulfur [on loss of the N(2) hydrogen].  相似文献   
169.
The time decay of correlation for Brownian motion in a one-dimensional periodic potential and for large viscosity is studied analytically in an asymptotic method. The result is related to the dynamics of an overdamped sine-Gordon chain. The relevance of our finding to the superionic conduction phenomena is discussed.  相似文献   
170.
Small angle X-ray scattering has been utilised to study the structure of hematite aggregates. The small angle X-ray scattering (SAXS) spectra obtained provided insight into structure of the hematite aggregates and the size of the primary particles. The structural analysis results obtained by SAXS are consistent with previous results obtained from static light scattering studies. Both techniques indicate that the mass fractal dimensions of hematite aggregates are markedly higher than those obtained for other particle systems.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号