首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   23篇
  国内免费   1篇
化学   31篇
力学   38篇
数学   42篇
物理学   30篇
  2024年   1篇
  2022年   3篇
  2021年   11篇
  2020年   12篇
  2019年   13篇
  2018年   32篇
  2017年   18篇
  2016年   21篇
  2015年   8篇
  2014年   8篇
  2013年   6篇
  2012年   4篇
  2011年   1篇
  2009年   2篇
  2008年   1篇
排序方式: 共有141条查询结果,搜索用时 0 毫秒
21.
This study models the magnetohydrodynamic (MHD) three-dimensional boundary layer flow of viscoelastic fluid. The flow is due to the exponentially stretching surface. The heat transfer analysis is performed through prescribed surface temperature (PST) and prescribed surface heat flux (PHF). The thermal conductivity is taken temperature dependent. Series solutions of velocities and temperatures are constructed. Graphical results for PST and PHF cases are plotted and analyzed. Numerical values of skin-friction coefficients and Nusselt numbers are presented and discussed.  相似文献   
22.
The effect of nonlinear mixed convection in stretched flows of rate-type non-Newtonian materials is described. The formulation is based upon the Maxwell liquid which elaborates thermal relation time characteristics. Nanofluid properties are studied considering thermophoresis and Brownian movement. Thermal radiation, double stratification, convective conditions, and heat generation are incorporated in energy and nanoparticle concentration expressions. A boundary-layer concept is implemented for the simplification of mathematical expressions. The modeled nonlinear problems are computed with an optimal homotopy scheme. Moreover, the Nusselt and Sherwood numbers as well as the velocity, nanoparticle concentration, and temperature are emphasized. The results show opposite impacts of the Deborah number and the porosity factor on the velocity distribution.  相似文献   
23.
The two-dimensional boundary layer flow of an Oldroyd-B fluid in the presence of nanoparticles is investigated. Convective heat and mass conditions are considered in the presence of thermal radiation and heat generation. The Brownian motion and thermophoresis effects are retained. The nonlinear partial differential equations are reduced into the ordinary differential equation (ODE) systems. The resulting ODE systems are solved for the series solutions. The results are analyzed for various physical parameters of interest. Numerical values of the local Nusselt and Sherwood numbers are also computed and analyzed.  相似文献   
24.
Mixed convection three-dimensional flow of Jeffrey fluid is studied in the presence of thermal radiation and thermophoresis. The relevant problems are formulated, and series solutions are presented for velocities, temperature, and concentration. Convergence of series solutions is obtained graphically and numerically. Effects of different emerging parameters on the velocities, temperature, and concentration fields are plotted and discussed.  相似文献   
25.
26.
Here thermal dependence conductivity and nonlinear convection features in third-grade liquid flow bounded by moving surface having varying thickness are formulated. Stagnation point flow is considered. Revised FourierFick relations and double stratification phenomena are utilized for modeling energy and concentration expressions. Mathematical model of considered physical problem is achieved by implementing the idea of boundary layer theory. The acquired partial differential system is transformed into ordinary ones by employing relevant variables. The homotopic scheme yield convergent solutions of governing nonlinear expressions. Graphs are constructed for distinct values of physical constraints to elaborate the heat/mass transportation mechanisms.  相似文献   
27.
A boundary layer flow of a non-Newtonian fluid in the presence of nanoparticles is examined. The flow is caused by a vertical stretching sheet. Convergence of the solution obtained is checked. The values of velocity, temperature, skin friction, and Nusselt number in the boundary layer are obtained.  相似文献   
28.
This article investigates the three-dimensional flow of Powell–Eyring nanofluid with thermophoresis and Brownian motion effects. The energy equation is considered in the presence of thermal radiation. The heat and mass flux conditions are taken into account. Mathematical formulation is carried out through the boundary layer approach. The governing partial differential equations are transformed into the nonlinear ordinary differential equations through suitable variables. The resulting nonlinear ordinary differential equations have been solved for the series solutions. Effects of emerging physical parameters on the temperature and nanoparticles concentration are plotted and discussed. Numerical values of local Nusselt and Sherwood numbers are computed and examined.  相似文献   
29.
An analysis is carried out for dual solutions of the boundary layer flow of Maxwell fluid over a permeable shrinking sheet. In the investigation, a constant wall mass transfer is considered. With the help of similarity transformations, the governing partial differential equations(PDEs) are converted into a nonlinear self-similar ordinary differential equation(ODE). For the numerical solution of transformed self-similar ODE, the shooting method is applied. The study reveals that the steady flow of Maxwell fluid is possible with a smaller amount of imposed mass suction compared with the viscous fluid flow. Dual solutions for the velocity distribution are obtained. Also, the increase of Deborah number reduces the boundary layer thickness for both solutions.  相似文献   
30.
Riccati equation approach is used to look for exact travelling wave solutions of some nonlinear physical models. Solitary wave solutions are established for the modified KdV equation, the Boussinesq equation and the Zakharov-Kuznetsov equation. New generalized solitary wave solutions with some free parameters are derived. The obtained solutions, which includes some previously known solitary wave solutions and some new ones, are expressed by a composition of Riccati differential equation solution...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号