首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1737篇
  免费   120篇
  国内免费   31篇
化学   1222篇
晶体学   5篇
力学   113篇
数学   204篇
物理学   344篇
  2024年   3篇
  2023年   13篇
  2022年   59篇
  2021年   57篇
  2020年   92篇
  2019年   94篇
  2018年   146篇
  2017年   89篇
  2016年   148篇
  2015年   91篇
  2014年   127篇
  2013年   227篇
  2012年   153篇
  2011年   125篇
  2010年   87篇
  2009年   67篇
  2008年   65篇
  2007年   57篇
  2006年   44篇
  2005年   39篇
  2004年   25篇
  2003年   15篇
  2002年   16篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   6篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1992年   3篇
  1991年   3篇
  1989年   1篇
  1985年   1篇
  1982年   1篇
  1981年   2篇
  1980年   8篇
  1979年   6篇
  1978年   3篇
  1976年   2篇
排序方式: 共有1888条查询结果,搜索用时 15 毫秒
81.
In this study, the effect of phosphorous compound concentration on the production of glucosamine by Mucor indicus was investigated. Changes in the yield of ethanol, the major metabolite of the fungus, were also followed besides. The alkali insoluble material of the biomass of the fungus mainly contained phosphates and polymers of glucosamine and N-acetyl glucosamine, i.e., chitin and chitosan. Yields of glucosamine (78–113 g/kg dry fungal biomass) and ethanol (200–370 g/kg glucose) were significantly affected by the phosphorous concentration. The results showed that lower concentrations of phosphorous favored the production of glucosamine while higher ethanol as well as biomass yields was obtained at higher concentrations. The best concentration was 0.5 g/l where glucosamine yield was 0.37 g/l (11 % of the biomass). At this phosphate concentration, ethanol and biomass yields were 360 and 76 g/kg glucose, respectively. On average, proteins comprised 51.5 % of the biomass. Glycerol was the second important metabolite during the fermentation by the fungus which appeared at lower yields (20–34 g/kg glucose).  相似文献   
82.
An experimental study on the pertraction of methylene blue (MB) through a supported liquid membrane (SLM) using a mixture of mono-(2-etylhexyl) ester of phosphoric acid (M2EHPA) and bis-(2-etylhexyl) ester of phosphoric acid (D2EHPA) and sesame oil as the liquid membrane (LM) was performed. Parameters affecting the pertraction of MB such as initial MB concentration, carrier concentration, feed phase pH, and stripping phase concentration were analyzed. Optimal experimental conditions for MB pertraction (permeability of 5.63 × 10?6) were obtained after a 7 h separation with the MB concentration in the feed phase of 80 mg L?1, D2EHPA/M2EHPA concentration in membrane phase of 40 vol. %, feed pH of 6, and acetic acid concentration in the stripping phase of 0.4 mol L?1. Kinetics of transport and stability of the SLM system were also studied and the mass transfer coefficient for this system was evaluated. Scanning electron microscopy (SEM) was used to morphologically characterize the membrane surface.  相似文献   
83.
The low temperature perovskite-type calcium titanate (CaTiO3) thin films and powders with nanocrystalline and mesoporous structure were prepared by a straightforward particulate sol–gel route. The prepared sol had a narrow particle size distribution about 17 nm. X-ray diffraction and Fourier transform infrared spectroscopy revealed that, the synthesized powders had highly pure and crystallized CaTiO3 structure with preferable orientation growth along (1 2 1) direction at 400–800 °C. The activation energy of crystal growth was calculated 5.73 kJ/mol. Furthermore, transmission electron microscope images showed that the average crystallite size of the powders annealed at 400 °C was around 3.5 nm. Field emission scanning electron microscope analysis and atomic force microscope images revealed that, the deposited thin films had uniform, mesoporous and nanocrystalline structure with the average grain size in the range 33–39 nm depending on annealing temperature. Based on Brunauer–Emmett–Teller (BET) analysis, the synthesized powders showed mesoporous structure with BET surface area in the range 51–21 m2/g at 400–800 °C. One of the smallest crystallite size and one of the highest surface areas reported in the literature is obtained which can be used in many applications, such as photocatalysts.  相似文献   
84.
A palladium-catalyzed dehydrogenative acylation of indoles using easily accessible aldehydes as the acyl source is described. This reaction provides a new approach for the synthesis of 3-acylindoles.  相似文献   
85.
Sulfonic acid functionalized SBA-15 (SBA-Pr-SO3H) as a new nanoporous solid acid catalyst was applied in the green one-pot synthesis of spiro[indole-tetrahydropyrano(2,3-d)pyrimidine] derivatives via three-component reaction of isatins, malononitrile or cyanoacetic esters and barbituric acids under solvent-free conditions. SBA-Pr-SO3H was proved to be an efficient heterogeneous nanoporous solid acid catalyst with a pore size of 6 nm, which could be easily handled and removed from the reaction mixture by simple filtration and can be recovered and reused several times without any loss of activity. The advantages of this methodology are high product yields, being environmentally benign, short reaction times, and easy handling.  相似文献   
86.
87.
Research on Chemical Intermediates - The synthesis of 4-Aryl-(3,5-dimethyl-1,4,7,8-tetrahydro-dipyrazolo[3,4b:4′,3′e]pyridine derivatives was accomplished using Fe3O4@SiO2@(BuSO3H)3...  相似文献   
88.
Journal of Thermal Analysis and Calorimetry - In this research, the effect of using GO/ water nanofluid as a coolant fluid in an isothermal heat transfer system was studied. At first, to evaluate...  相似文献   
89.
The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium Vibrio fischeri, the freshwater microalga Pseudokirchneriella subcapitata, the freshwater crustacean Daphnia magna, and the duckweed Spirodela polyrhiza. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.  相似文献   
90.
Research on Chemical Intermediates - In this research, synthesis and characterization of a novel Schiff base Cu (II) complex immobilized on Fe3O4@SiO2 nanoparticles are reported. Then, the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号