首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   654篇
  免费   28篇
  国内免费   2篇
化学   541篇
晶体学   5篇
力学   10篇
数学   76篇
物理学   52篇
  2024年   1篇
  2023年   8篇
  2022年   21篇
  2021年   45篇
  2020年   23篇
  2019年   24篇
  2018年   19篇
  2017年   22篇
  2016年   29篇
  2015年   33篇
  2014年   25篇
  2013年   48篇
  2012年   45篇
  2011年   61篇
  2010年   25篇
  2009年   31篇
  2008年   30篇
  2007年   37篇
  2006年   26篇
  2005年   28篇
  2004年   25篇
  2003年   19篇
  2002年   17篇
  2001年   9篇
  2000年   3篇
  1999年   4篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1991年   2篇
  1989年   1篇
  1988年   3篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1969年   1篇
  1964年   1篇
排序方式: 共有684条查询结果,搜索用时 15 毫秒
671.
We report on the simple fabrication of Ag NP films via thermal evaporation and subsequent annealing. The NPs are formed on indium tin oxide electrodes, coated with PEDOT:PSS and implemented into PCPDTBT:PC70BM solar cells. Scanning electron microscopy and atomic force microscopy are used to determine the size distributions and surface coverage of the NP film. We apply finite‐difference time‐domain techniques to model the optical properties of different nanoparticle films and compare this with the absorption properties of the organic active layer. The simulations demonstrate that the absorption and scattering efficiency of the particles are very sensitive to particle geometry. Solar cells prepared with window electrodes containing NP layers with less surface coverage, show a 14.8% improvement in efficiency. We discuss variations in the external quantum efficiency of the devices in terms of forward scattering and parasitic absorption losses induced by the NP layer. (© 2015 WILEY‐VCH Verlag GmbH &Co. KGaA, Weinheim)  相似文献   
672.
Acid-oxidized multiwalled carbon nanotubes (MWCNTs) were introduced into a polyurethane (PU) matrix at low filler levels (0.01–0.25 wt%) through either van der Waals or covalent interactions, and their glass transition dynamics using dynamic mechanical analysis and laser-interferometric creep rate spectroscopy was investigated. The nanocomposites reveal substantial impact on the PU glass transition dynamics, which depends on the nanotube content and type of interfacial interactions. The pronounced dynamic heterogeneity within the glass transition covering 200 °C range and the displacement of main PU relaxation maxima from around 0 to 80–140 °C were registered. The results are treated in the framework of chemical inhomogeneity, constrained dynamics effects, and different motional cooperativities. The peculiariaties of the glass transition dynamics in the composites are reflected in their dynamic and static mechanical properties, in particular a two- to threefold increase in modulus and tensile strength for the covalent interfacial interaction of MWCNTs with PU.  相似文献   
673.
Diastereomerically pure, isotopically labeled 5'- O -DMT-nucleoside-3'- O -(2-thio-4,4-"spiro"-pentamethylene-1,3,2-[ 18 O]oxathiaphospholane)s and -(2-oxo-4,4-"spiro"-pentamethylene-1,3,2-[ 18 O]oxathiaphospholane)s suitable for stereocontrolled synthesis of P-chiral oligonucleotide [ 18 O]phosphorothioates and [ 18 O]phosphates were synthesized. Obtained in that way "chimeric" oligonucleotide d[A PO A PS-Rp,Sp A PS-Rp , Sp A PS-Rp C PS(18O)-Rp G PS-Rp T PS-Rp T PS-Rp,Sp T PO T] was used for determination of the stereochemistry of hydrolysis by endonuclease from Serratia marcescens .  相似文献   
674.
A new liquid chromatographic (LC) method for simultaneous determination of lidocaine hydrochloride (LH) and tribenoside (TR) along with their related compounds in pharmaceutical preparations is described. Satisfactory LC separation of all analytes after the liquid–liquid extraction (LLE) procedure with ethanol was performed on a C18 column using a gradient elution of a mixture of acetonitrile and 0.1 % orthophosphoric acid as the mobile phase. The procedure was validated according to the ICH guidelines. The limits of detection (LOD) and quantification (LOQ) were 4.36 and 13.21 μg mL?1 for LH, 7.60 and 23.04 μg mL?1 for TR, and below 0.11 and 0.33 μg mL?1 for their impurities, respectively. Intra- and inter-day precision was below 1.97 %, whereas accuracy for all analytes ranged from 98.17 to 101.94 %. The proposed method was sensitive, robust, and specific allowing reliable simultaneous quantification of all mentioned compounds. Moreover, a comparative study of the RP-LC column classification based on the quantitative structure-retention relationships (QSRR) and column selectivity obtained in real pharmaceutical analysis was innovatively applied using factor analysis (FA). In the column performance test, the analysis of LH and TR in the presence of their impurities was carried out according to the developed method with the use of 12 RP-LC stationary phases previously tested under the QSRR conditions. The obtained results confirmed that the classes of the stationary phases selected in accordance with the QSRR models provided comparable separation for LH, TR, and their impurities. Hence, it was concluded that the proposed QSRR approach could be considered a supportive tool in the selection of the suitable column for the pharmaceutical analysis.  相似文献   
675.
Self-assembly processes are considered to be fundamental factors in supramolecular chemistry. Langmuir monolayers of surfactants or lipids have been shown to constitute effective 2D "templates" for self-assembled nanoparticles and colloids. Here we show that alkyl-coated gold nanoparticles (Au NPs) adopt distinct configurations when incorporated within Langmuir monolayers comprising two lipid components at different mole ratios. Thermodynamic and microscopy analyses reveal that the organization of the Au NP aggregates is governed by both lipid components. In particular, we show that the configurations of the NP assemblies were significantly affected by the extent of molecular interactions between the two lipid components within the monolayer and the monolayer phases formed by each individual lipid. This study demonstrates that multicomponent Langmuir monolayers significantly modulate the self-assembly properties of embedded Au NPs and that parameters such as the monolayer composition, surface pressure, and temperature significantly affect the 2D nanoparticle organization.  相似文献   
676.
Nanosized metal aluminates, MAl2O4 (M = Ni, Co), have been prepared following a nonpolluting, low temperature, and self-sustaining starch single-fuel combustion synthesis. The mixed fuel-coordinating actions of starch have given rise to an intermediary precursor which afforded monodisperse metal aluminate nanoparticles. The thermal analysis of the [M(II), Al(III)]-starch precursors indicates a similar thermochemical reactivity for the two compounds, displaying a sequence of well-defined decomposition stages associated with three endothermic effects and three/four (nickel/cobalt) exothermic ones. The XRD data confirm the formation of spinelic phase and a continuous growth of particle sizes with the increase of calcination temperatures. The mechanisms proposed for the formation of metal aluminates essentially consist in a combination of solid-state reactions of amorphous NiO/Co3O4 and Al2O3 simple oxides. The evaluation criterion of Ni(II) cations into the spinelic lattice is original and is based on the distinct occupancy degree of tetrahedral and octahedral sites in NiAl2O4 and γ-Al2O3. TEM/HRTEM investigations performed on the cobalt(II) and nickel(II) aluminate oxide powders resulted after calcination at 800 and 900 °C, respectively, for 1 h show the formation of irregular and isolated plate-like particles for Co(II)-based spinelic oxides (the average particle size is 16.6 nm) and submicron aggregates of small, bimodal, and almost uniform (as shape and size) of NiAl2O4 mixed oxide (the mean particle size is 33.6 nm). The NIR–UV–Vis spectra for the resulted MAl2O4 (M = Co, Ni) mixed oxides reveal a massive presence of tetrahedral divalent cations both for short- and long-time calcined samples. NiO impurities are detected using FTIR and electronic spectra for all NiAl2O4 samples.  相似文献   
677.
Single-layer graphene oxide (SLGO) possesses carboxylic and hydroxyl groups suitable for reactions with aliphatic or aromatic diisocyanate molecules. TEM analysis reveals that aliphatic diisocyanate molecules caused SLGO to scroll into star-like formations, whereas aromatic diisocyanate molecules retained SGLO in a flat-sheet morphology. TGA confirms the stabilisation of the formed urea and urethane groups on SLGO, but the onset of sheet pyrolysis occurs at a lower temperature due to isocyanate reactions with anhydride and epoxide groups embedded in the sheet. Pendant isocyanate groups act as bridging units to facilitate the attachment of pyrrole molecules, which are then used as anchor sites for the covalent polymerisation of pyrrole to polypyrrole (PPy). The use of FeCl3 as the polymerisation catalyst generated both covalent and free PPy, but also iron hydroxide nanoparticles were observed decorating the SLGO surface. When using ammonium persulfate as a catalyst and dodecylbenzenesulfonate as a dopant, free PPy could be removed under treatment with solvents to leave a purely covalent system. Discrete regions of SLGO were observed decorated with nanoparticles of PPy along the edge or across the surface of individual sheets. It was found that the flexibility of the SLGO sheet and the type of diisocyanate used directly affected the electrical resistance of the final composite.  相似文献   
678.
The fast neutron therapy facility at the University of Washington has been in routine clinical use for 25 years. 50.5 MeV protons produce neutrons in a beryllium target mounted on an isocentric gantry. Beam shaping is accomplished with a 40-leaf collimator. Dosimetry measurements for treatment planning and calibration are performed with tissue equivalent ion chambers. A layered phantom of alternating Solid Water® and Plastic Water® slabs has been developed for rapid dose verification measurements. The neutron field in the room has been used for radiation testing of electronic components.  相似文献   
679.
The photophysical properties of the three 1,3,4-oxadiazole derivatives containing fluorene (Ox-FL); fluorene and phenolphtaleine (Ox-FL-FF); or fluorene and bisphenol A (Ox-FL-BPA) moieties in the main chain were investigated by the fluorescence and absorption spectroscopy in different solvents and in the solid state. The electronic absorption spectra included a strong absorption band located in the 270–395 nm region, with a maxima around at 302 nm. The fluorescence excitation spectra were also characterized by one broad band, appearing in the wavelength range of 220–340 nm. All samples displayed the emission bands around 356–373 nm and exhibit high quantum yields ranged from 31.61 to 90.77%, in chloroform solution. The sensitivity of the emission spectra on medium characteristics (polarity, acidity and basicity) were evaluated by using the Catalan solvent scale and the fluorescence titration with a dilute acid solution.  相似文献   
680.
New coordination compounds of Mn(II), Fe(III), Co(II), and Ni(II) and the biologically active ligand L (N′-benzylidenepyrazine-2-carbohydrazonamide) were synthesized and characterized by appropriate analytical techniques: elemental analysis (EA), thermogravimetric analysis (TG–DTG), infrared spectroscopy (FTIR), and flame-atomic absorption spectrometry (F-AAS). The biological activity of the obtained compounds was then comprehensively investigated. Rational use of these compounds as potential drugs was proven by ADME analysis. All obtained compounds were screened in vitro for antibacterial, antifungal, and anticancer activities. Some of the studied complexes exhibited significantly higher activity than the ligand alone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号