首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1189篇
  免费   36篇
  国内免费   4篇
化学   817篇
晶体学   4篇
力学   21篇
数学   230篇
物理学   157篇
  2023年   14篇
  2022年   34篇
  2021年   35篇
  2020年   34篇
  2019年   29篇
  2018年   13篇
  2017年   17篇
  2016年   35篇
  2015年   32篇
  2014年   38篇
  2013年   47篇
  2012年   84篇
  2011年   79篇
  2010年   38篇
  2009年   44篇
  2008年   57篇
  2007年   60篇
  2006年   59篇
  2005年   68篇
  2004年   60篇
  2003年   39篇
  2002年   27篇
  2001年   14篇
  2000年   12篇
  1999年   9篇
  1998年   10篇
  1997年   17篇
  1996年   15篇
  1995年   16篇
  1994年   16篇
  1993年   12篇
  1992年   13篇
  1991年   7篇
  1990年   6篇
  1989年   7篇
  1988年   4篇
  1987年   7篇
  1985年   10篇
  1983年   5篇
  1982年   8篇
  1981年   8篇
  1978年   8篇
  1974年   6篇
  1973年   9篇
  1971年   3篇
  1969年   4篇
  1967年   3篇
  1966年   3篇
  1939年   3篇
  1918年   3篇
排序方式: 共有1229条查询结果,搜索用时 15 毫秒
71.
Inelastic X-ray scattering experiments have been performed on methanol as a function of density from ambient to the supercritical state. Positive dispersion of the sound velocity, as compared to the hydrodynamic values, is 50% in the ambient condition and decreases to zero at 0.50 g cm−3 over the momentum transfer Q = 1–10 nm−1 with lowering density; however, it increases again with a further decrease in density down to 0.20 g cm−3in the supercritical state only in the Q-range above 5 nm−1. These results have been interpreted as the formation of small oligomers in the low-density supercritical methanol.  相似文献   
72.
We report here a liquid chromatography (LC) method with inline ultraviolet/evaporative light scattering (UV/ELS) detection for the simultaneous quantification of the terpenelactones and flavonol aglycones in a single sample of hydrolyzed Ginkgo biloba extract (GBE). The sample is hydrolyzed by a rapid and convenient oven heating method for 1 h at 90 degrees C with 10% hydrochloric acid. The 1 h hydrolysis was found to be equivalent to the 2.25 h reflux treatment for dry powder extract, where total flavonol glycosides were 28.4 and 28.1%, respectively. Acceptable precision was achieved for total terpenelactones [relative standard deviation (RSD) = 4.8%] by ELS detection, and total flavonol aglycones (RSD = 2.3%) by UV detection. The analytical range was 1.5 to 7.3% (w/w) for the individual terpenelactones (ELS) and 2.5 to 15.0% (w/w) for the individual glycosides (UV) calculated from the aglycones quercetin, kaempferol, and isorhamnetin. This improved method allows for the first time high throughput sample preparation coupled with the quantification of the predominant compounds generally used for quality control of GBE in a single assay.  相似文献   
73.
A fluorescent affinity tag (FAT) was synthesized and was utilized to selectively modify phosphorylated serine and threonine residues via beta-elimination and Michael addition chemistries in a 'one-step' reaction. This labeling technique was used for covalent modification of both phosphoproteins and phosphopeptides, allowing identification of these molecular species by fluorescence imaging after solution- or gel-based separation methods. In addition to the strong fluorescence of the rhodamine tag, a commercially available antibody can be used to enrich low-abundance post-labeled phosphopeptides present in complex mixtures. Application of this methodology to phosphorylation-site mapping has been evaluated for a phosphoprotein standard, bovine beta-casein. Initial results demonstrated low femtomole detection limits after fluorescence image analysis of FAT-labeled proteins or peptides.  相似文献   
74.
Ca2+, "a signal of life and death", controls numerous cellular processes through interactions with proteins. An effective approach to understanding the role of Ca2+ is the design of a Ca2+-binding protein with predicted structural and functional properties. To design de novo Ca2+-binding sites in proteins is challenging due to the high coordination numbers and the incorporation of charged ligand residues, in addition to Ca2+-induced conformational change. Here, we demonstrate the successful design of a Ca2+-binding site in the non-Ca2+-binding cell adhesion protein CD2. This designed protein, Ca.CD2, exhibits selectivity for Ca2+ versus other di- and monovalent cations. In addition, La3+ (Kd 5.0 microM) and Tb3+ (Kd 6.6 microM) bind to the designed protein somewhat more tightly than does Ca2+ (Kd 1.4 mM). More interestingly, Ca.CD2 retains the native ability to associate with the natural target molecule. The solution structure reveals that Ca.CD2 binds Ca2+ at the intended site with the designed arrangement, which validates our general strategy for designing de novo Ca2+-binding proteins. The structural information also provides a close view of structural determinants that are necessary for a functional protein to accommodate the metal-binding site. This first success in designing Ca2+-binding proteins with desired structural and functional properties opens a new avenue in unveiling key determinants to Ca2+ binding, the mechanism of Ca2+ signaling, and Ca2+-dependent cell adhesion, while avoiding the complexities of the global conformational changes and cooperativity in natural Ca2+-binding proteins. It also represents a major achievement toward designing functional proteins controlled by Ca2+ binding.  相似文献   
75.
Cannabis sativa L., a low-cost, fast-growing herbaceous plant, is seeing a resurgence in widespread cultivation as a result of new policies and product drive. Its biodegradable and environmentally benign nature coupled with its high specific surface area and three-dimensional hierarchal structure makes it an excellent candidate for use as a biomass-derived carbon material for electrochemical power sources. It is proposed that this ‘wonder crop’ could have an important role in the energy transition by providing high-functioning carbon-based materials for electrochemistry. In this article, all instances of C. sativa usage in batteries, fuel cells and supercapacitors are discussed with a focus on highlighting the high capacity, rate capability, capacitance, current density and half-wave potential that can be achieved with its utilisation in the field.  相似文献   
76.
Protamines are a group of highly basic peptides that are sometimes added to insulin formulations to prolong the pharmacological action. In this study, different methods were investigated to identify protamine in insulin formulations. Capillary electrophoresis in aqueous and non‐aqueous media was tested to separate these peptides with very close amino acid sequences. Different buffers (phosphate or formate, both acidified) and various additives (principally negatively charged and neutral surfactants) were investigated to optimize peptide separation. Finally, a micellar electrokinetic capillary chromatography method using a capillary of 120 cm effective length and an aqueous background electrolyte made up of 100 mM phosphate buffer (pH 2) and 50 mM Thesit® gave the best results, providing the separation of the four major protamine peptides within 25 min.  相似文献   
77.
We demonstrate the unique ability of catanionic vesicles, formed by mixing single-tailed cationic and anionic surfactants, to capture ionic solutes with remarkable efficiency. In an initial study (Wang, X.; Danoff, E. J.; Sinkov, N. A.; Lee, J.-H.; Raghavan, S. R.; English, D. S. Langmuir 2006, 22, 6461) with vesicles formed from cetyl trimethylammonium tosylate (CTAT) and sodium dodecylbenzenesulfonate (SDBS), we showed that CTAT-rich (cationic) vesicles could capture the anionic solute carboxyfluorescein with high efficiency (22%) and that the solute was retained by the vesicles for very long times (t1/2 = 84 days). Here we expand on these findings by investigating the interactions of both anionic and cationic solutes, including the chemotherapeutic agent doxorubicin, with both CTAT-rich and SDBS-rich vesicles. The ability of these vesicles to capture and hold dyes is extremely efficient (>20%) when the excess charge of the vesicle bilayer is opposite that of the solute (i.e., for anionic solutes in CTAT-rich vesicles and for cationic solutes in SDBS-rich vesicles). This charge-dependent effect is strong enough to enable the use of vesicles to selectively capture and separate an oppositely charged solute from a mixture of solutes. Our results suggest that catanionic surfactant vesicles could be useful for a variety of separation and drug delivery applications because of their unique properties and long-term stability.  相似文献   
78.
The development of novel microanalytical techniques forin situ chemical characterization of the terrestrial subsurface environment has grown significantly over the last decade, particularly those instruments that are interfaced to the cone penetrometer. Cone penetrometer testing (CPT) has emerged as an effective means to introduce samplers and probes forin situ analysis of contaminants in soil and groundwater matrices. A variety ofin situ chemical samplers for CPT have been developed that can be driven into the subsurface to collect soil gas, groundwater, or soil samples at depth, thus providing a means of determining the vertical and horizontal extent of contamination. Cone penetrometer testing is also being explored as a means to deliverin situ subsurface sensor probes, including probes based on laser-induced fluorescence, Raman, and infrared spectroscopies for organics; on laser-induced breakdown and X-ray fluorescence spectroscopies for heavy metals; and on passive gamma-ray spectroscopy for radionuclides. The range of analytical technologies used in CPT for the determination of organic and inorganic species in the subsurface is described.  相似文献   
79.
A new, potentially polydentate sulfur–nitrogen chelating agent, 2,6–bis(N-methyl-S-methyldithiocarbazato)pyridine (L) has been synthesized and characterized. With nickel(II) salts, the ligand yields complexes of empirical formula NiLX2·nH2O (X=Cl−, NCS− or NO3−; n=0 or 1) in which it behaves as a quadridentate NSSN chelating agent, coordinating to the nickel(II) ion via the two amino nitrogen atoms and the two sulfur atoms. Magnetic and spectral evidence support a distorted octahedral structure for these complexes. The ligand reacts with copper(II), platinum(II) and palladium(II) salts to yield homo-binuclear complexes of general formula [M2LX4]·nSol (M=CuII, PtII or PdII; X=Cl− or Br−; n=0.5, 1 or 2; Sol=H2O, MeOH or MeCOMe), in which each of the metal ions is in a square-planar environment. These complexes have been characterized by a variety of physicochemical techniques. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
80.
A one-pot procedure to difunctionalized fused tricyclic bispyrroloquinone derivatives involving the condensation of N-tosylindoledione and α-ketoamines is described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号