首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44645篇
  免费   8566篇
  国内免费   1509篇
化学   46641篇
晶体学   399篇
力学   913篇
综合类   3篇
数学   3021篇
物理学   3743篇
  2024年   24篇
  2023年   93篇
  2022年   476篇
  2021年   562篇
  2020年   1553篇
  2019年   2961篇
  2018年   1433篇
  2017年   993篇
  2016年   3902篇
  2015年   3872篇
  2014年   3917篇
  2013年   4996篇
  2012年   3599篇
  2011年   2758篇
  2010年   3295篇
  2009年   3165篇
  2008年   2706篇
  2007年   2036篇
  2006年   1614篇
  2005年   1818篇
  2004年   1521篇
  2003年   1419篇
  2002年   2065篇
  2001年   1401篇
  2000年   1296篇
  1999年   394篇
  1998年   67篇
  1997年   72篇
  1996年   48篇
  1995年   35篇
  1994年   39篇
  1993年   20篇
  1992年   37篇
  1991年   33篇
  1990年   30篇
  1989年   36篇
  1988年   33篇
  1987年   34篇
  1986年   30篇
  1985年   37篇
  1984年   36篇
  1983年   23篇
  1982年   29篇
  1981年   20篇
  1980年   23篇
  1979年   20篇
  1978年   18篇
  1977年   13篇
  1976年   15篇
  1974年   16篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
71.
A novel copolymer, poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐2,6‐pyridylene‐1,2‐ethenylene) ( P3 ), containing N‐hexyl‐3,7‐phenothiazylene and 2,6‐pyridylene chromophores was synthesized to investigate the effect of protonation, metal complexation, and chemical oxidation on its absorption and photoluminescence (PL). Poly(N‐hexyl‐3,8‐iminodibenzyl‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) and poly(N‐hexyl‐3,7‐phenothiazylene‐1,2‐ethenylene‐1,3‐phenylene‐1,2‐ethenylene) ( P2 ), consisting of 1,3‐divinylbenzene alternated with N‐hexyl‐3,8‐iminodibenzyl and N‐hexyl‐3,7‐phenothiazylene, respectively, were also prepared for comparison. Electrochemical investigations revealed that P3 exhibited lower band gaps (2.34 eV) due to alternating donor and acceptor conjugated units (push–pull structure). The absorption and PL spectral variations of P3 were easily manipulated by protonation, metal chelation, and chemical oxidation. P3 displayed significant bathochromic shifts when protonated with trifluoroacetic acid in chloroform. The complexation of P3 with Fe3+ led to a significant absorption change and fluorescence quenching, and this implied the coordination of ferric ions with the 2,6‐pyridylene groups in the backbone. Moreover, both phenothiazylene‐containing P2 and P3 showed conspicuous PL quenching with a slight redshift when oxidized with NOBF4. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1272–1284, 2004  相似文献   
72.
The reversible addition–fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2‐cyanoprop‐2‐yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANs were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. 1H NMR analysis confirmed the high chain‐end functionality of the resultant polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1272–1281, 2007  相似文献   
73.
This work reports a new synthetic approach for single‐phase TiO2 nanomaterials by solvothermal treatment of titanium tetrachloride in acetone at 80–110 °C. Small, uniform, and yet size‐tunable (5–10 nm) anatase titania nanocrystallites were obtained using a low concentration of TiCl4 in acetone (i.e., at molar ratios of TiCl4/acetone ≤ 1:15) in the temperature range of 80–110 °C, while rutile nanofibers were synthesized using a high concentration of TiCl4 (e.g., TiCl4/acetone = 1:10) at 110 °C. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
74.
75.
Bipyridinophane–fluorene conjugated copolymers have been synthesized via Suzuki and Heck coupling reactions from 5,8‐dibromo‐2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane and suitable fluorene precursors. Poly[2,7‐(9,9‐dihexylfluorene)‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P7 ) exhibits large absorption and emission redshifts of 20 and 34 nm, respectively, with respect to its planar reference polymer Poly[2,7‐(9,9‐dihexylfluorene)‐co‐alt‐1,4‐(2,5‐dimethylbenzene)] ( P11 ), which bears the same polymer backbone as P7 . These spectral shifts originate from intramolecular aromatic C? H/π interactions, which are evidenced by ultraviolet–visible and 1H NMR spectra as well as X‐ray single‐crystal structural analysis. However, the effect of the intramolecular aromatic C? H/π interactions on the spectral shift in poly[9,9‐dihexylfluorene‐2,7‐yleneethynylene‐coalt‐5,8‐(2,11‐dithia[3]paracyclo[3](4,4′)‐2,2′‐bipyridinophane)] ( P10 ) is much weaker. Most interestingly, the quenching behaviors of these two conjugated polymers are largely dependent on the polymer backbone. For example, the fluorescence of P7 is efficiently quenched by Cu2+, Co2+, Ni2+, Zn2+, Mn2+, and Ag+ ions. In contrast, only Cu2+, Co2+, and Ni2+ ions can partially quench the fluorescence of P10 , but much less efficiently than the fluorescence of P7 . The static Stern–Volmer quenching constants of Cu2+, Co2+, and Ni2+ ions toward P7 are of the order of 106 M?1, being 1300, 2500, and 37,300 times larger than those of P10 , respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 4154–4164, 2006  相似文献   
76.
77.
Low‐molecular‐weight poly(acrylic acid) (PAA) was synthesized by reversible addition fragmentation chain transfer polymerization with a trithiocarbonate as chain‐transfer agent (CTA). With a combination of NMR spectroscopy and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry, the PAA end‐groups of the polymer were analyzed before and after neutralization by sodium hydroxide. The polymer prior to neutralization is made up of the expected trithiocarbonate chain‐ends and of the H‐terminated chains issued from a reaction of transfer to solvent. After neutralization, the trithiocarbonates are transformed into thiols, disulfides, thiolactones, and additional H‐terminated chains. By quantifying the different end‐groups, it was possible to demonstrate that fragmentation is the rate limiting step in the transfer reaction. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5439–5462, 2004  相似文献   
78.
The dispersion behavior of agglomerates of several grades of fumed silica in poly(dimethyl siloxane) liquids has been studied as a function of particle morphology and applied flow conditions. The effects of primary particle size and aggregate density and structure on cohesivity were probed through tensile and shear strength tests on particle compacts. These cohesivity tests indicated that the shear strength of particle compacts was two orders of magnitude higher than the tensile strength at the same overall packing density. Experiments carried out in both steady and time‐varying simple‐shear flows indicate that dispersion occurs through tensile failure. In the steady‐shear experiments,enhanced dispersion was obtained at higher levels of applied stress and, at comparable levels of applied stress, dispersion was found to proceed faster at higher shear rates. Experiments conducted in time‐varying flows further corroborated the results obtained in tensile cohesivity tests. Experiments in which the mean and maximum stresses in the time‐varying flows were matched to the stresses produced in steady shear flows highlight the influence of flow dynamics on dispersion behavior.  相似文献   
79.
The synthesis and characterization of photopolymerizable unsaturated polyester resins based on PET waste are described. The resins came from a depolymerization process based on the glycolysis of PET by diethylene glycol (DEG). Different molecular weights of glycolysates were synthesized. Then, the latter was functionalized by a methyl hemiester of maleic acid to obtain unsatured α,ω‐bismaleate PET oligomers. In the presence of an electron donor monomer, such as triethylene glycol divinyl ether, these electron acceptor oligomers were copolymerized by way of charge‐transfer complexes under UV irradiation. The reaction was monitored in situ by real‐time IR spectroscopy to study the kinetics of photopolymerization. This one was studied in relation with the physical and chemical characteristics of oligoesters and the composition of mixtures containing divinyl ethers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 1324–1335, 2007  相似文献   
80.
In the idealized two‐phase model of a semicrystalline polymer, the amorphous intercrystalline layers are considered to have the same properties as the fully‐amorphous polymer. In reality, these thin intercrystalline layers can be substantially influenced by the presence of the crystals, as individual polymer molecules traverse both crystalline and amorphous phases. In polymers with rigid backbone units, such as poly(etheretherketone), PEEK, previous work has shown this coupling to be particularly severe; the glass transition temperature (Tg) can be elevated by tens of degrees celsius, with the magnitude of the elevation correlating directly with the thinness of the amorphous layer. However, this connection has not been explored for flexible‐chain polymers, such as those formed from vinyl‐type monomers. Here, we examine Tg in both isotactic polystyrene (iPS) and syndiotactic polystyrene (sPS), crystallized under conditions that produce a range of amorphous layer thicknesses. Tg is indeed shown to be elevated relative to fully‐amorphous iPS and sPS, by an amount that correlates with the thinness of the amorphous layer; the magnitude of the effect is severalfold less than that in PEEK, consistent with the minimum lengths of polymer chain required to make a fold in the different cases. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 1198–1204, 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号