首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   901篇
  免费   27篇
  国内免费   9篇
化学   670篇
晶体学   9篇
力学   21篇
数学   130篇
物理学   107篇
  2023年   3篇
  2022年   9篇
  2021年   24篇
  2020年   21篇
  2019年   16篇
  2018年   17篇
  2017年   16篇
  2016年   24篇
  2015年   18篇
  2014年   28篇
  2013年   51篇
  2012年   72篇
  2011年   70篇
  2010年   47篇
  2009年   26篇
  2008年   46篇
  2007年   37篇
  2006年   46篇
  2005年   54篇
  2004年   37篇
  2003年   49篇
  2002年   30篇
  2001年   19篇
  2000年   12篇
  1999年   8篇
  1998年   7篇
  1997年   9篇
  1996年   12篇
  1995年   10篇
  1994年   10篇
  1993年   6篇
  1992年   3篇
  1991年   6篇
  1990年   7篇
  1989年   8篇
  1987年   6篇
  1986年   5篇
  1985年   5篇
  1984年   6篇
  1983年   10篇
  1982年   9篇
  1980年   4篇
  1979年   3篇
  1978年   3篇
  1977年   5篇
  1974年   2篇
  1972年   4篇
  1970年   3篇
  1969年   2篇
  1968年   2篇
排序方式: 共有937条查询结果,搜索用时 15 毫秒
821.
The photo-stabilising action of three metal chelates in unprocessed and processed polypropylene is examined using normal and second order derivative ultraviolet and infra-red spectroscopic techniques and hydroperoxide analysis. The effects of photolysis with 254 nm light versus photo-sensitised oxidation with 365 nm light are compared. For each exposure condition the rate of carbonyl formation in the polymer is compared with the rate of decomposition of the metal complex. On photolysis, carbonyl growth commences well before the complete destruction of the complexes and none offers protection to the polymer. In fact, all three chelates behave as photo-sensitisers, indicating that stabiliser photolysis products are photo-active. On photo-sensitised oxidation, while the initial hydroperoxide concentration appears to control the onset of carbonyl growth in the polymer, the rate of decomposition of the complexes shows no dependence on hydroperoxide concentration. Solution experiments indicate that there are no dark reactions with hydroperoxides apart from one of the nickel chelates (Cyasorb UV 1084) at high concentrations (~ 10?2m) only. Essentially, the metal chelates operate by scavenging macroalkyl radical species (P·) and not alkoxy (PO·) and hydroxy radicals (·OH) during photo-oxidation. They also inhibit hydroperoxide formation during processing and one of the nickel chelates (UV 1084) gives products during the early stages of photo-oxidation which appear to operate as effective stabilisers.  相似文献   
822.
A new polydentate bridging ligand, NH(4)C(5)N=NC(6)H(4)N(H)C(5)H(4)N (HL(2)), is synthesized by the cobalt-mediated phenyl ring amination of coordinated NH(4)C(5)N=NC(6)H(5). The green cobalt complex intermediate [Co(L(2))(2)](ClO(4)), [1](ClO(4)), and the free ligand HL(2) were isolated and characterized. The X-ray structure of [H(2)L(2)](ClO(4)) is reported. The ligand, upon deprotonation, behaves as a bridging ligand. It reacts with NiCl(2).6H(2)O and Na(2)[PdCl(4)] to produce dimetallic complexes, [Ni(2)Cl(2)(L(2))(2)], 2, and [Pd(2)(L(2))(2)](ClO(4))(2), [3](ClO(4))(2), respectively. X-ray structures of these two dimetallic complexes are reported. The structure of the dinickel complex, in particular, is unique. In this complex, the two deprotonated secondary amine nitrogens of the two [L(2)](-) ligands bind to two nickel centers simultaneously forming a planar Ni(2)N(2) arrangement. The complex [3](ClO(4))(2) is diamagnetic while the complex 2 is paramagnetic. The results of magnetic measurements on the dinickel complex in the temperature range 1.8-300 K are reported. The system can be described as a single spin S = 2 in the low-temperature range T < J/k whereas at high temperatures, T > J/k, it behaves as two independent spins S = 1.The reaction of [L(2)](-) with K(2)[PtCl(4)], however, yielded a monometallic platinum complex, [PtCl(3)(L(2))], 5, where the pyridyl nitrogen of the aminopyridyl function remained unused. The X-ray structure of the complex 4a is reported. The bond lengths along the ligand backbones in all the complexes indicate extensive pi-delocalization. Spectral data of the complexes are reported and compared.  相似文献   
823.
Catalytic antibodies have been developed by experimental approaches exploiting the analogy between antibody-antigen and enzyme-substrate interaction. Haptens have been prepared to model the electrostatic or geometric attributes of a reaction’s transition state and to induce combining sites having appropriate catalytic residues. The relative merits of these design strategies may be gleaned from the apparent activities and efficiencies of the respective catalysts. The implications of screening strategies on the kinetic characteristics of the resulting abzymes are also considered. Combining-site hypermutation provides the variation in the antibody repertoire from which high-affinity clones are selected. The same mechanism can also lead to a subset of antibodies with reduced hapten affinity, but improved catalytic activity. This possibility has not been adequately characterized, but is suggested by a number of considerations. These include the unexplained efficiency and diversity of mechanisms utilized by various antibody catalysts, and the observed catalytic activity of antibodies found in autoimmune serum. This article attempts to assess critically the evidence for rational design of catalytic activity in antibodies. Correlations among abzymes and their relevant models could lead to revised or novel strategies for producing better catalysts.  相似文献   
824.
Summary The hydrolysis of coordinated thiosemicarbazones was studied. It was found that the nickel(II) ion promotes the reaction. Steric and electronic influences were found. The hydrolysis ofATSC in the trigonal bipyramid compounds [M(ATSC)2Cl]Cl [M=Fe(II), Co(II), Ni(II)], is higher with the Ni(II) complex, the compound with the shorterM-N distance.
Semicarbazone und Thiosemicarbazone, 13. Mitt.: Untersuchungen zur Hydrolyse koordinierter Thiosemicarbazone
Zusammenfassung Bei der Hydrolyse von koordinierten Thiosemicarbazonen wurde festgestellet, daß das Nickel(II)-Ion die Reaktion begünstigt. Es wurden sterische und elektronische Einflüsse gefunden. Die Hydrolysengeschwindigkeit desATSC im trigonal bipyramidalen Komplex [M(ATSC)2Cl]Cl [M=Fe(II), Co(II), Ni(II)] ist höher mit dem Ni(II)-Komplex, der Verbindung mit der kürzerenM-N-Distanz.
  相似文献   
825.
The reaction of (bpzmp)Zr(CH2Ph)3 with B(C6F5)3 produces the active ethylene polymerisation catalyst [(bpzmp)Zr(CH2Ph)2]+[PhCH2B(C6F5)3]- which showed a temperature dependent polymerisation mechanism identified by variable temperature 1H NMR analysis of the catalyst solution.  相似文献   
826.
The symmetric d(5) trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)] (R = Me, 1 a; Et, 1 b; Ph, 1 c) (dmpe = 1,2-bis(dimethylphosphino)ethane) have been prepared by the reaction of [Mn(dmpe)(2)Br(2)] with two equivalents of the corresponding acetylide LiC triple bond CSiR(3). The reactions of species 1 with [Cp(2)Fe][PF(6)] yield the corresponding d(4) complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(2)][PF(6)] (R = Me, 2 a; Et, 2 b; Ph, 2 c). These complexes react with NBu(4)F (TBAF) at -10 degrees C to give the desilylated parent acetylide compound [Mn(dmpe)(2)(C triple bond CH)(2)][PF(6)] (6), which is stable only in solution at below 0 degrees C. The asymmetrically substituted trans-bis-alkynyl complexes [Mn(dmpe)(2)(C triple bond CSiR(3))(C triple bond CH)][PF(6)] (R = Me, 7 a; Et, 7 b) related to 6 have been prepared by the reaction of the vinylidene compounds [Mn(dmpe)(2)(C triple bond CSiR(3))(C=CH(2))] (R = Me, 5 a; Et, 5 b) with two equivalents of [Cp(2)Fe][PF(6)] and one equivalent of quinuclidine. The conversion of [Mn(C(5)H(4)Me)(dmpe)I] with Me(3)SiC triple bond CSnMe(3) and dmpe afforded the trans-iodide-alkynyl d(5) complex [Mn(dmpe)(2)(C triple bond CSiMe(3))I] (9). Complex 9 proved to be unstable with regard to ligand disproportionation reactions and could therefore not be oxidized to a unique Mn(III) product, which prevented its further use in acetylide coupling reactions. Compounds 2 react at room temperature with one equivalent of TBAF to form the mixed-valent species [[Mn(dmpe)(2)(C triple bond CH)](2)(micro-C(4))][PF(6)] (11) by C-C coupling of [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] radicals generated by deprotonation of 6. In a similar way, the mixed-valent complex [[Mn(dmpe)(2)(C triple bond CSiMe(3))](2)(micro-C(4))][PF(6)] [12](+) is obtained by the reaction of 7 a with one equivalent of DBU (1,8-diazabicyclo[5.4.0]undec-7-ene). The relatively long-lived radical intermediate [Mn(dmpe)(2)(C triple bond CH)(C triple bond C*)] could be trapped as the Mn(I) complex [Mn(dmpe)(2)(C triple bond CH)(triple bond C-CO(2))] (14) by addition of an excess of TEMPO (2,2,6,6-tetramethyl-1-piperidinyloxy) to the reaction mixtures of species 2 and TBAF. The neutral dinuclear Mn(II)/Mn(II) compounds [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))] (R = H, 11; R = SiMe(3), 12) are produced by the reduction of [11](+) and [12](+), respectively, with [FeCp(C(6)Me(6))]. [11](+) and [12](+) can also be oxidized with [Cp(2)Fe][PF(6)] to produce the dicationic Mn(III)/Mn(III) species [[Mn(dmpe)(2)(C triple bond CR(3))](2)(micro-C(4))][PF(6)](2) (R = H, [11](2+); R = SiMe(3), [12](2+)). Both redox processes are fully reversible. The dinuclear compounds have been characterized by NMR, IR, UV/Vis, and Raman spectroscopies, CV, and magnetic susceptibilities, as well as elemental analyses. X-ray diffraction studies have been performed on complexes 4 b, 7 b, 9, [12](+), [12](2+), and 14.  相似文献   
827.
Sodium in dry methanol reduces 2‐cyanopyridine in the presence of 3‐hexamethyleneiminylthiosemicarbazide and produces 2‐pyridineformamide 3‐hexamethyleneiminylthiosemicarbazone, HAmhexim ( 1 ). Complexes with zinc(II ), cadmium(II ) and mercury(II ) have been prepared and characterized by spectroscopic techniques. In addition, the crystal structures of HAmhexim ( 1 ), [Zn(Amhexim)(OAc)]2μ·μDMSO ( 2 ), [Cd(HAmhexim)Cl2]μ·μDMSO ( 7 ), [Cd(Amhexim)2] ( 8 ), [Cd(HAmhexim)Br2]μ·μDMSO ( 9 ), [Cd(HAmhexim)I2]μ·μEtOH ( 10 ), [Hg(HAmhexim)Cl2]μ·μDMSO ( 11 ), [Hg(Amhexim)Br]2 ( 13 ), [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O ( 14 ) and [Hg(Amhexim)I]2 ( 15 ) have been determined. Coordination of the anionic and neutral thiosemicarbazone ligand occurs through the pyridine nitrogen atom, imine nitrogen atom, and thiolato or thione sulfur atom. In [Zn(Amhexim)(OAc)]2 one of the bridging acetato ligands has monodentate coordination and the other bridges in a bidentate manner. [Cd(Amhexim)2] is a 6‐coordinate species while the other cadmium complexes are 5‐coordinate. In [Hg(Amhexim)Br]2 and [Hg(Amhexim)I]2 the thiolato sulfur atoms act as bridges between the Hg atoms to form dimeric compounds and [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O is a trinuclear complex with three different centers — two metallic centers have a 5‐coordination and the another one has 4‐coordination. In addition, [Hg(HAmhexim)Cl2]μ·μDMSO and [Hg3(HAmhexim)(Amhexim)Br5]μ·μH2O shown a supramolecular one‐dimensional hydrogen‐bonded self‐assembling.  相似文献   
828.
The acidity constants of 3-fold protonated 9-[2-(2-phosphonoethoxy)ethyl]adenine, H3(PEEA)+, and of 2-fold protonated (2-phosphonoethoxy)ethane, H2(PEE), and the stability constants of the M(H;PEEA)+, M(PEEA), and M(PEE) complexes with M2+ = Mg2+, Ca2+, Sr2+, Ba2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, or Cd2+ have been determined (potentiometric pH titrations; aqueous solution; 25 degrees C; I = 0.1 M, NaNO3). It is concluded that in the M(H;PEEA)+ species, the proton is at the phosphonate group and the metal ion at the adenine residue. The application of previously determined straight-line plots of log K(M(R-PO3))M versus pK(H(R-PO3))H for simple phosph(on)ate ligands, R-PO3(2-), where R represents a residue that does not affect metal-ion binding, proves that the M(PEEA) complexes of Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ as well as the M(PEE) complexes of Co2+, Cu2+, and Zn2+ have larger stabilities than is expected for a sole phosphonate coordination of M2+. For the M2+ complexes without an enhanced stability (e.g., Mg2+ or Mn2+), it is concluded that M2+ binds in a monodentate fashion to the phosphonate group of the two ligands. Combination of all of the results allows the following conclusions: (i) The increased stability of the Co(PEE), Cu(PEE), Zn(PEE), and Co(PEEA) complexes is due to the formation of six-membered chelates involving the ether-oxygen atom of the aliphatic residue (-CH2-O-CH2CH2-PO3(2-)) of the ligands with formation degrees of about 15-30%. (ii) Cd(PEEA) forms a macrochelate with N7 of the adenine residue (formation degree about 30%); Ni(PEEA) has similar properties. (iii) With Zn(PEEA), both mentioned types of chelates are observed, that is, Zn(PEEA)(cl/O) and Zn(PEEA)(cl/N7), with formation degrees of about 13 and 41%, respectively; the remaining 46% is due to the "open" isomer Zn(PEEA)(op) in which the metal ion binds only to the PO3(2-) group. (iv) Most remarkable is Cu(PEEA) because a fourth isomer, Cu(PEEA)(cl/O/N3), is formed that contains a six-membered ring involving the ether oxygen next to the phosphonate group and also a seven-membered ring involving N3 of the adenine residue with a very significant formation degree of about 50%. Hence, PEEA(2-) is a truly ambivalent ligand, its properties being strongly dependent on the kind of metal ion involved. Comparisons with M2+ complexes formed by the dianions of 9-[2-(phosphonomethoxy)ethyl]adenine (PMEA) and related ligands reveal that five-membered chelates involving an ether-oxygen atom are considerably more stable than the corresponding six-membered ones. This observation offers an explanation of why PMEA is a nucleotide analogue with excellent antiviral properties and PEEA is not.  相似文献   
829.
Cobalt(III) complexes of acetyl- and formylpyrazine N(4)-substituted thiosemicarbazones have been synthesized and characterized by spectral and physical techniques. The crystal structure of the bis{formylpyrazine N(4)-methylthiosemicarbazone}cobalt(III) complex shows the two ligands coordinated in a mer-configuration, and the orientation of the thiosemicarbazone moiety's N(4)-methyl is Z with respect to the thiolato sulfur in both ligands. Included is the crystal structure of the bis- {2-acetylpyridineN(4)-propylthiosemicarbazone}cobalt(III) complex in which the two thiosemicarbazone ligands are also in the mer-configuration, but one ligand has the propyl group oriented Z with respect to the thiolato sulfur and the other E. Both complexes' bond lengths and bond angles are compared with other cobalt(III) thiosemicarbazone complexes.  相似文献   
830.
[reaction: see text] A systematic study addressed toward the optimization of the Pd-catalyzed alkylation of indoles by allylic carbonates is presented. The protocol uses a catalytic amount of [PdCl(pi-allyl)](2)/phosphine as a promoting agent, providing allylindoles in excellent yields. The regioselectivity of the reaction can be controlled by a proper choice of the base and the reaction media. The method proved to be effective also for intramolecular allylic alkylations of indolyl carbonates, providing a flexible route to fused indole alkaloids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号