首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   165篇
  免费   1篇
  国内免费   2篇
化学   88篇
力学   5篇
数学   48篇
物理学   27篇
  2020年   3篇
  2017年   4篇
  2015年   4篇
  2013年   10篇
  2012年   4篇
  2011年   15篇
  2010年   6篇
  2008年   8篇
  2007年   10篇
  2006年   9篇
  2005年   7篇
  2004年   4篇
  2003年   3篇
  2002年   11篇
  2001年   4篇
  2000年   2篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1993年   2篇
  1990年   2篇
  1985年   1篇
  1982年   2篇
  1980年   1篇
  1979年   6篇
  1978年   3篇
  1977年   1篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1967年   1篇
  1937年   3篇
  1936年   1篇
  1933年   1篇
  1931年   1篇
  1930年   1篇
  1906年   1篇
  1905年   1篇
  1904年   1篇
  1903年   1篇
  1896年   1篇
  1891年   1篇
  1883年   1篇
  1880年   1篇
  1878年   1篇
排序方式: 共有168条查询结果,搜索用时 15 毫秒
21.
Quantum Monte Carlo calculations with the diffusion Monte Carlo (DMC) method have been used to compute the binding energy curves of hydrogen on benzene, coronene, and graphene. The DMC results on benzene agree with both M?ller-Plessett second order perturbation theory (MP2) and coupled cluster with singles, doubles, and perturbative triples [CCSD(T)] calculations, giving an adsorption energy of ~25 meV. For coronene, DMC agrees well with MP2, giving an adsorption energy of ~40 meV. For physisorbed hydrogen on graphene, DMC predicts a very small adsorption energy of only 5 ± 5 meV. Density functional theory (DFT) calculations with various exchange-correlation functionals, including van der Waals corrected functionals, predict a wide range of binding energies on all three systems. The present DMC results are a step toward filling the gap in accurate benchmark data on weakly bound systems. These results can help us to understand the performance of current DFT based methods, and may aid in the development of improved approaches.  相似文献   
22.
23.
24.
25.
26.
The rate of substitution to reduction has been investigated for reactions of three phenyl-substituted allylic ethers and the corresponding acetates with EtMgBr plus 10 or 25% copper(I) bromide in THF. It is found that the relative amount of reduction increases with increased electron delocalization in the postulated copper(III)-bound allyl ligand, and is also dependent on the nature of the leaving group; methoxy giving much more reduction product than acetoxy. Furthermore, for one acetate investigated there was more reduction at −65° than at −25°C. The results are interpreted in terms of relative binding strength of allyl ligands to a copper(III) intermediate.  相似文献   
27.
28.
29.
It is well-known, both theoretically and experimentally, that alloying MgH(2) with transition elements can significantly improve the thermodynamic and kinetic properties for H(2) desorption, as well as the H(2) intake by Mg bulk. Here, we present a density functional theory investigation of hydrogen dissociation and surface diffusion over a Ni-doped surface and compare the findings to previously investigated Ti-doped Mg(0001) and pure Mg(0001) surfaces. Our results show that the energy barrier for hydrogen dissociation on the pure Mg(0001) surface is high, while it is small/null when NiTi are added to the surface as dopants. We find that the binding energy of the two H atoms near the dissociation site is high on Ti, effectively impeding diffusion away from the Ti site. By contrast, we find that on Ni, the energy barrier for diffusion is much reduced. Therefore, although both Ti and Ni promote H(2) dissociation, only Ni appears to be a good catalyst for Mg hydrogenation, allowing diffusion away from the catalytic sites. Experimental results corroborate these theoretical findings, i.e., faster hydrogenation of the Ni-doped Mg sample as opposed to the reference Mg- or Ti-doped Mg.  相似文献   
30.
The dissociation and formation of water on the Rh(111) and Ni(111) surfaces have been studied using density functional theory with generalized gradient approximation and ultrasoft pseudopotentials. Calculations have been performed on 2x2 surface unit cells, corresponding to coverages of 0.25 ML, with spot checks on 3x3 surface unit cells (0.11 ML). On both surfaces, the authors find that water adsorbs flat on top of a surface atom, with binding energies of 0.35 and 0.25 eV, respectively, on Rh(111) and Ni(111), and is free to rotate in the surface plane. Barriers of 0.92 and 0.89 eV have to be overcome to dissociate the molecule into OH and H on the Rh(111) and Ni(111) surfaces, respectively. Further barriers of 1.03 and 0.97 eV need to be overcome to dissociate OH into O and H. The barriers for the formation of the OH molecule from isolated adsorbed O and H are found to be 1.1 and 1.3 eV, and the barriers for the formation of the water molecule from isolated adsorbed OH and H are 0.82 and 1.05 eV on the two surfaces. These barriers are found to vary very little as coverage is changed from 0.25 to 0.11 ML. The authors have also studied the dissociation of OH in the presence of coadsorbed H or O. The presence of a coadsorbed H atom only weakly affects the energy barriers, but the effect of O is significant, changing the dissociation barrier from 1.03 to 1.37 and 1.15 eV at 0.25 or 0.11 ML coverage on the Rh(111) surface. Finally, the authors have studied the dissociation of water in the presence of one O atom on Rh(111), at 0.11 ML coverage, and the authors find a barrier of 0.56 eV to dissociate the molecule into OH+OH.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号