The methods for X‐ray crystal orientation are rapidly evolving towards versatility, fewer goniometry measurements, automation, high accuracy and precision. One method that attracts a lot of attention is energy‐dispersive X‐ray diffraction (EDXRD) which is based on detecting reflections from crystallographic planes in a crystal at fixed angles of a parallel polychromatic X‐ray incident beam. In theory, an EDXRD peak can move in a diffraction pattern as a function of a crystallographic plane d‐spacing and its orientation relative to a fixed direction in space can change also. This is equivalent to the possibility of measuring the orientation of single crystals. The article provides a modeling for the EDXRD method whose main feature is the nonmoving crystal in the sense of traditional goniometry where the angle measurements of diffracting planes are a must. The article defines the equation of orientation for the method and shows the derivation in great detail. It is shown that the exact solutions of the equations can be obtained using the generalized reduced gradient method, a mathematical subroutine that is implemented in Excel software. The significance and scientific impact of the work are discussed along with the validated tested results. 相似文献
This paper deals with the analysis and comparative studies of the two of the most used types of polymer filaments dedicated to the 3D printing industry. The study is focused on the mechanical, elastic, and thermal properties of two different types of plastic materials filaments – acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) as well as on future development in various categories like industrial, medical, home decoration, and education. For carrying out this study, different specimens are printed using fused filament fabrication (FFF) technique, taking into account an infill percentage of 30% with a triangular shape as pattern type (internal structure). 相似文献
It is well known that mass-metric tensor determinants det(G(s)) influence the equilibrium statistics and the rates of conformational transitions for polymers with constrained bond lengths and bond angles. It is now standard practice to include a Fixman-style compensating potential of the form U(c)(q(s)) proportional, variant(-k(B)T/2)ln[det(G(s))] as part of algorithms for torsional space molecular dynamics. This elegant strategy helps eliminate unwarranted biases that arise due to the imposition of holonomic constraints. However, the precise nature and extent of variation of det(G(s)) and hence ln[det(G(s))] with chain conformation and chain length has never been quantified. This type of analysis is crucial for understanding the nature of the conformational bias that the introduction of a Fixman potential aims to eliminate. Additionally, a detailed analysis of the conformational dependence of det(G(s)) will help resolve ambiguities regarding suggestions for incorporating terms related to det(G(s)) in the design of move sets in torsional space Monte Carlo simulations. In this work, we present results from a systematic study of the variation of det(G(s)) for a serial polymer with fixed bond lengths and bond angles as a function of chain conformation and chain length. This analysis requires an algorithm designed for rapid computation of det(G(s)) which simultaneously allows for a physical/geometric interpretation of the conformational dependence of det(G(s)). Consequently, we provide a detailed discussion of our adaptation of an O(n) algorithm from the robotics literature, which leads to simple recursion relations for direct evaluation of det(G(s)). Our analysis of the conformational dependence of det(G(s)) yields the following insights. (1) det(G(s)) is maximized for spatial conformers and minimized for planar conformations. (2) Previous work suggests that it is logical to expect that the conformational dependence of det(G(s)) becomes more pronounced with increase in chain length. Confirming this expectation, we provide systematic quantification of the nature of this dependency and show that the difference in det(G(s)) between spatial and planar conformers, i.e., between the maxima and minima of det(G(s)) grows systematically with chain length. Finally, we provide a brief discussion of implications of our analysis for the design of move sets in Monte Carlo simulations. 相似文献
The vapour pressures of the binary systems 1,2-dichloroethane + cyclohexanone, chloroform + cyclopentanone and chloroform + cyclohexanone mixtures were measured at temperatures between 298.15 and 318.15 K. The vapour pressures vs. liquid phase composition data for three isotherms have been used to calculate the activity coefficients of the two components and the excess molar Gibbs energies, GE, for these mixtures, using Barker's method. Redlich–Kister, Wilson, NRTL and UNIQUAC equations, taking into account the vapour phase imperfection in terms of the 2-nd virial coefficient, have represented the GE values. No significant difference between GE values obtained with these equations has been observed. Our data on vapour–liquid equilibria (VLE) and excess properties of the studied systems are examined in terms of the DISQUAC and modified UNIFAC (Dortmund) predictive group contributions models. 相似文献
Journal of Thermal Analysis and Calorimetry - Two new zinc(II) coordination compounds have been synthesized by the reaction of diazine-ring containing Schiff bases di(2-pyridyl) ketone... 相似文献
In this study, the preparation by grafting of amino-functionalized SBA-15 molecular sieves was carried out. Amino-functionalized molecular sieves were synthesized using a silane coupling agent and different types of amination reagents which react with modified SBA-15. These composites were characterized by FT-IR spectroscopy, X-ray diffraction at low angles, nitrogen physisorption at 77 K, and evaluated by the adsorption of CO2 and its temperature-programmed desorption—TPD. Thermal stability was investigated by TGA and DTA methods. In the view of a possible use of these amino-functionalized molecular sieves as sorbents for CO2 removal, their adsorption–desorption properties towards CO2 were also investigated by the TPD method. The mass loss of amino-functionalized molecular sieves above 215 °C was due to the oxidation and decomposition of amino propyl functional groups. This means that these composites could be used for adsorption of CO2 at temperatures below 215 °C. The adsorption of CO2 and its temperature programmed desorption using thermogravimetry were studied for amino-functionalized molecular sieves at 60 °C. The evolved gases during the adsorption–desorption of CO2 on amino-functionalized molecular sieves were identified by online mass spectrometry coupled with thermogravimetry. CO2 adsorption isotherms of functionalized samples at 60 °C showed that both the adsorption capacity (mg CO2/g adsorbent) and the efficiency of amino groups (mol CO2/mol NH2) depend on the type of amination reagents and the amount of organic compound used.
Whereas the internal fragment topological index (IFTI) is calculated in the normal manner as for any molecule, the external fragment topological index (EFTI) is calculated so as to reflect the interaction between the excised fragment F and the remainder of the molecule (G-F). For selected topological indices (TIs), a survey of EFTI values, formulas and examples is presented. Some requirements as to the fragment indices are formulated and examined. In the discussion of the results, it is shown that for some TIs regularities exist in the dependence of EFTI values upon the branching of fragment F, or upon the marginal versus central position of the fragment F in the graph G. New vortex invariants can be computed as EFTI values for one-atom fragments over all graph vertices; by iteration, it is in principle possible to devise an infinite number of now vertex invariants. 相似文献
Abstract A novel, fast, and easy method for synthesizing a carbon-supported Ni2P nanocomposite (C/Ni2P) is described. The process involves a reaction between a nickel salt, phosphoric acid, and a carbon source by utilizing microwave irradiation. The carbon source for the nanocomposite is from renewable supplies, namely, tannin and lignin. The method has successfully synthesized Ni2P nanoparticles dispersed in a carbon matrix with a particle size ranging from 20 to 50 nm in diameter. During the microwave process, tannin and lignin provided a reducing environment in the microwave irradiation process. The synthesized products are characterized by several characterization methods. The method showed that phosphoric acid, which is a nontoxic compound, could be used as an alternative P source for synthesizing Ni2P. The method is fast, easy, and an economical process to synthesize the carbon-coated Ni2P nanocomposite. 相似文献
Lipidic cubic phases (LCPs) are used in areas ranging from membrane biology to biodevices. Because some membrane proteins are notoriously unstable at room temperature, and available LCPs undergo transformation to lamellar phases at low temperatures, development of stable low‐temperature LCPs for biophysical studies of membrane proteins is called for. Monodihydrosterculin (MDS) is a designer lipid based on monoolein (MO) with a configurationally restricted cyclopropyl ring replacing the olefin. Small‐angle X‐ray scattering (SAXS) analyses revealed a phase diagram for MDS lacking the high‐temperature, highly curved reverse hexagonal phase typical for MO, and extending the cubic phase boundary to lower temperature, thereby establishing the relationship between lipid molecular structure and mesophase behavior. The use of MDS as a new material for LCP‐based membrane protein crystallization at low temperature was demonstrated by crystallizing bacteriorhodopsin at 20 °C as well as 4 °C. 相似文献