首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17334篇
  免费   252篇
  国内免费   108篇
化学   10549篇
晶体学   130篇
力学   379篇
综合类   1篇
数学   3082篇
物理学   3553篇
  2024年   86篇
  2023年   191篇
  2022年   331篇
  2021年   462篇
  2020年   540篇
  2019年   704篇
  2018年   447篇
  2017年   350篇
  2016年   640篇
  2015年   607篇
  2014年   601篇
  2013年   951篇
  2012年   1132篇
  2011年   1319篇
  2010年   703篇
  2009年   597篇
  2008年   928篇
  2007年   847篇
  2006年   860篇
  2005年   792篇
  2004年   620篇
  2003年   489篇
  2002年   452篇
  2001年   252篇
  2000年   188篇
  1999年   193篇
  1998年   173篇
  1997年   166篇
  1996年   174篇
  1995年   146篇
  1994年   118篇
  1993年   110篇
  1992年   87篇
  1991年   77篇
  1990年   70篇
  1989年   47篇
  1988年   49篇
  1987年   51篇
  1986年   48篇
  1985年   73篇
  1984年   66篇
  1982年   62篇
  1981年   57篇
  1980年   49篇
  1979年   44篇
  1978年   51篇
  1977年   53篇
  1976年   65篇
  1974年   53篇
  1973年   42篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
161.
N-heterocyclic nitrogen Lewis acids are a recent addition to the field of organic chemistry. Based on nitrenium cations, these acids where previously shown to generate Lewis adducts when combined with the appropriate Lewis bases. Herein, a triazinium-based Lewis acid was combined with tBu3P to generate a frustrated Lewis pair (FLP) capable of cleaving, for the first time, Si−H bonds in silanes. Whereas low yields were initially encountered owing to insufficient Lewis acidity, a new nitrenium-based Lewis acid was synthesized, and its superior Lewis acidity was experimentally and computationally confirmed. A FLP based on this acid cleaved the Si−H bond in PhSiH3, generating the triazane product in a quantitative yield. This unprecedented N−H triazane was fully characterized by multinuclear NMR techniques and single-crystal X-ray crystallography. A new class of compounds, N-H triazanes display the potential capacity to participate in hydride transfer reactions.  相似文献   
162.
    
We designed and demonstrated the unique abilities of the first gas chromatography–molecular rotational resonance spectrometer (GC-MRR). While broadly and routinely applicable, its capabilities can exceed those of high-resolution MS and NMR spectroscopy in terms of selectivity, resolution, and compound identification. A series of 24 isotopologues and isotopomers of five organic compounds are separated, identified, and quantified in a single run. Natural isotopic abundances of mixtures of compounds containing chlorine, bromine, and sulfur heteroatoms are easily determined. MRR detection provides the added high specificity for these selective gas-phase separations. GC-MRR is shown to be ideal for compound-specific isotope analysis (CSIA). Different bacterial cultures and groundwater were shown to have contrasting isotopic selectivities for common organic compounds. The ease of such GC-MRR measurements may initiate a new era in biosynthetic/degradation and geochemical isotopic compound studies.  相似文献   
163.
    
Previous studies of different solvates of 2-methylpyridyllithium (2-picolyllithium) have uncovered electronic structures corresponding to aza-allyl and enamido resonance forms of the metallated pyridine-based compounds. Here, we report the synthesis and characterization of [2-CH2Li(THF)2C5H4N], a new THF solvate. X-ray crystallographic studies reveal a dimeric arrangement featuring a non-planar eight-membered [NCCLi]2 ring, in which the primary cation-anion interaction is between the central Li atom and the C atom of the deprotonated methyl group [length, 2.285(2) Å], suggesting a new carbanionic resonance structure for this 2-picolyllithium series. The significant carbanionic character of [2-CH2Li(THF)2C5H4N] was confirmed by gas-phase DFT calculations [B3LYP/6-311+G(d)] with the calculated electron density interrogated by means of quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. For comparison these computational analyses were also performed on the literature structures of [2-CH2Li(2-Picoline)C5H4N] and [2-CH2Li(PMDETA)C5H4N]. In a reactivity study, [2-CH2Li(THF)2C5H4N] was found to undergo nucleophilic addition to pyridine to generate dipyridylmethane in a good yield.  相似文献   
164.
    
The synthesis of [Ti6O4(OiPr)8(O2CPh)8] ( 3 ) and [RuCl(N≡CR)5][RuCl4(N≡CR)2] ( 4a , R = Me; 4b , R = Ph), [Ru(N≡CPh)6][RuCl4(N≡CPh)2] ( 5 ) and [H3O][RuCl4(N≡CMe)2] ( 7a ) is discussed. Crystallization of 5 from CH2Cl2 gave trans-[RuCl2(N≡CPh)4] ( 6 ). The solid-state structures of 3 , 4a , b , 5 , 6 and 7a are reported. Complex 4b forms a 3D network, while 6 displays a 2D structure, due to π-interactions between the benzonitrile ligands. The (spectro)electrochemical behavior of 4a , b and 6 was studied at 25 and –72 °C and the results thereof are compared with [NEt4][RuCl4(N≡CMe)2] ( 7b ) and [RuCl(N≡CPh)5][PF6] ( 8 ). The electrochemical response of the cation and the anion in 4a , b are independent from each other. [RuCl(N≡CR)5]+ possesses one reversible RuII/RuIII process. However, [RuCl4(N≡CMe)2] was shown to be prone to ligand exchange and disproportionation upon formation of either a RuIV and RuII species at 25 °C, while at –72 °C the rapid conversion of the electrochemically formed species is hindered. In situ IR and UV/Vis/NIR studies confirmed the respective disproportionation reaction products of the aforementioned oxidation and reduction, respectively.  相似文献   
165.
    
Compounds have been devised whose supportive actions make them important adjuvants in the priming of photosensitization to selectively target cancer cells. Here, we highlight the paper by Maytin and Hasan in this issue of Photochemistry & Photobiology, which describes adjuvants methotrexate, 5-fluorouracil, vitamin D and its analogs leading to improved photodynamic therapy outcome. These small molecule adjuvants act by different mechanisms to enhance the cytotoxicity in tumor cells and the therapeutic effect in cancers. These findings add to the list of strategies for enhancement of photodynamic therapy.  相似文献   
166.
    
In the present work, we studied in detail the thermochemistry, thermal stability, mechanical sensitivity, and detonation performance for 20 nitro-, cyano-, and methyl derivatives of 1,2,5-oxadiazole-2-oxide (furoxan), along with their bis-derivatives. For all species studied, we also determined the reliable values of the gas-phase formation enthalpies using highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach and isodesmic reactions with the domain-based local pair natural orbital (DLPNO) modifications of the coupled-cluster techniques. Apart from this, we proposed reliable benchmark values of the formation enthalpies of furoxan and a number of its (azo)bis-derivatives. Additionally, we reported the previously unknown crystal structure of 3-cyano-4-nitrofuroxan. Among the monocyclic compounds, 3-nitro-4-cyclopropyl and dicyano derivatives of furoxan outperformed trinitrotoluene, a benchmark melt-cast explosive, exhibited decent thermal stability (decomposition temperature >200 °C) and insensitivity to mechanical stimuli while having notable volatility and low melting points. In turn, 4,4′-azobis-dicarbamoyl furoxan is proposed as a substitute of pentaerythritol tetranitrate, a benchmark brisant high explosive. Finally, the application prospects of 3,3′-azobis-dinitro furoxan, one of the most powerful energetic materials synthesized up to date, are limited due to the tremendously high mechanical sensitivity of this compound. Overall, the investigated derivatives of furoxan comprise multipurpose green energetic materials, including primary, secondary, melt-cast, low-sensitive explosives, and an energetic liquid.  相似文献   
167.
    
Reaction of linear conjugated enynones, 1,5-diarylpent-2-en-4-yn-1-ones, with malononitrile in the presence of lithium diisopropylamide LDA, as a base, in THF at room temperature for 3–7 h resulted in the formation of the product of dimerization, multisubstituted polyfunctional cyclohexanes, 4-aryl-2,6-bis(arylethynyl)-3-(aryloxomethyl)-4-hydroxycyclohexane-1,1-dicarbonitriles, in yields up to 60%. Varying the reaction conditions by decreasing time and temperature and changing the ratio of starting compounds (enynone and malononitrile) allowed isolating some intermediate compounds, which confirmed a plausible reaction mechanism. The relative stability of possible stereoisomers of such cyclohexanes was estimated by quantum chemical calculations (DFT method). The obtained cyclohexanes were found to possess photoluminescent properties.  相似文献   
168.
    
The influence of steric repulsion between the NMe2 group and a second ortho-(peri-)substituent in the series of 1-dimethylaminonaphthalene and N,N-dimethylanilene ortho-oximes on the ease of the NMe2 group’s intramolecular nucleophilic substitution is studied. Possible reaction intermediates for three mechanisms are calculated (ωB97xd/def-2-TZVP), and their free Gibbs energies are compared to model reaction profiles. Supporting experiments have proved the absence of studied reactivity in the case of simple 2-dimethylaminobenzaldoxime, which allowed us to establish reactivity limits. The significant facilitation of NMe2 group displacement in the presence of bulky substituents is demonstrated. The possibility of fused isoxazoles synthesis via the intramolecular nucleophilic substitution of a protonated NMe2 group in the aniline and naphthalene series is predicted.  相似文献   
169.
    
Here we report that capping the molecule TTFtt (TTFtt = tetrathiafulvalene-2,3,6,7-tetrathiolate) with dialkyl tin groups enables the isolation of a stable series of redox congeners and facile transmetalation to Ni and Pd. TTFtt has been proposed as an attractive building block for molecular materials for two decades as it combines the redox chemistry of TTF and dithiolene units. TTFttH4, however, is inherently unstable and the incorporation of TTFtt units into complexes or materials typically proceeds through the in situ generation of the tetraanion TTFtt4−. Capping of TTFtt4− with Bu2Sn2+ units dramatically improves the stability of the TTFtt moiety and furthermore enables the isolation of a redox series where the TTF core carries the formal charges of 0, +1, and +2. All of these redox congeners show efficient and clean transmetalation to Ni and Pd resulting in an analogous series of bimetallic complexes capped by 1,2-bis(diphenylphosphino)ethane (dppe) ligands. Furthermore, by using the same transmetalation method, we synthesized analogous palladium complexes capped by 1,1′-bis(diphenylphosphino)ferrocene (dppf) which had been previously reported. All of these species have been thoroughly characterized through a systematic survey of chemical and electronic properties by techniques including cyclic voltammetry (CV), ultraviolet-visible-near infrared spectroscopy (UV-vis-NIR), electron paramagnetic resonance spectroscopy (EPR), nuclear magnetic resonance spectroscopy (NMR) and X-ray diffraction (XRD). These detailed synthetic and spectroscopic studies highlight important differences between the transmetalation strategy presented here and previously reported synthetic methods for the installation of TTFtt. In addition, the utility of this stabilization strategy can be illustrated by the observation of unusual TTF radical–radical packing in the solid state and dimerization in the solution state. Theoretical calculations based on variational 2-electron reduced density matrix methods have been used to investigate these unusual interactions and illustrate fundamentally different levels of covalency and overlap depending on the orientations of the TTF cores. Taken together, this work demonstrates that tin-capped TTFtt units are ideal reagents for the installation of redox-tunable TTFtt ligands enabling the generation of entirely new geometric and electronic structures.

Capping TTFtt enables facile transmetalation in three different oxidation states.  相似文献   
170.
    
How far can we push the limits in removing stereoelectronic protection from an unstable intermediate? We address this question by exploring the interplay between the primary and secondary stereoelectronic effects in the Baeyer–Villiger (BV) rearrangement by experimental and computational studies of γ-OR-substituted γ-peroxylactones, the previously elusive non-strained Criegee intermediates (CI). These new cyclic peroxides were synthesized by the peroxidation of γ-ketoesters followed by in situ cyclization using a BF3·Et2O/H2O2 system. Although the primary effect (alignment of the migrating C–Rm bond with the breaking O–O bond) is active in the 6-membered ring, weakening of the secondary effect (donation from the OR lone pair to the breaking C–Rm bond) provides sufficient kinetic stabilization to allow the formation and isolation of stable γ-hydroperoxy-γ-peroxylactones with a methyl-substituent in the C6-position. Furthermore, supplementary protection is also provided by reactant stabilization originating from two new stereoelectronic factors, both identified and quantified for the first time in the present work. First, an unexpected boat preference in the γ-hydroperoxy-γ-peroxylactones weakens the primary stereoelectronic effects and introduces a ∼2 kcal mol−1 Curtin–Hammett penalty for reacquiring the more reactive chair conformation. Second, activation of the secondary stereoelectronic effect in the TS comes with a ∼2–3 kcal mol−1 penalty for giving up the exo-anomeric stabilization in the 6-membered Criegee intermediate. Together, the three new stereoelectronic factors (inverse α-effect, misalignment of reacting bonds in the boat conformation, and the exo-anomeric effect) illustrate the richness of stereoelectronic patterns in peroxide chemistry and provide experimentally significant kinetic stabilization to this new class of bisperoxides. Furthermore, mild reduction of γ-hydroperoxy-γ-peroxylactone with Ph3P produced an isolable γ-hydroxy-γ-peroxylactone, the first example of a structurally unencumbered CI where neither the primary nor the secondary stereoelectronic effect are impeded. Although this compound is relatively unstable, it does not undergo the BV reaction and instead follows a new mode of reactivity for the CI – a ring-opening process.

Protecting stereoelectronic effects prevent Baeyer–Villiger rearrangement and stabilize γ-OX-γ-peroxylactones (X = H, OH), the previously elusive non-strained Criegee intermediates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号