首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15472篇
  免费   637篇
  国内免费   146篇
化学   10054篇
晶体学   50篇
力学   323篇
综合类   1篇
数学   2929篇
物理学   2898篇
  2023年   142篇
  2022年   290篇
  2021年   348篇
  2020年   419篇
  2019年   495篇
  2018年   379篇
  2017年   291篇
  2016年   597篇
  2015年   564篇
  2014年   548篇
  2013年   914篇
  2012年   1078篇
  2011年   1277篇
  2010年   679篇
  2009年   563篇
  2008年   910篇
  2007年   830篇
  2006年   840篇
  2005年   774篇
  2004年   605篇
  2003年   470篇
  2002年   437篇
  2001年   239篇
  2000年   170篇
  1999年   182篇
  1998年   155篇
  1997年   164篇
  1996年   167篇
  1995年   144篇
  1994年   113篇
  1993年   101篇
  1992年   85篇
  1991年   76篇
  1990年   64篇
  1989年   40篇
  1988年   44篇
  1987年   47篇
  1986年   46篇
  1985年   69篇
  1984年   57篇
  1983年   34篇
  1982年   58篇
  1981年   49篇
  1980年   44篇
  1979年   40篇
  1978年   44篇
  1977年   41篇
  1976年   47篇
  1974年   34篇
  1973年   29篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
141.
Behavioral and ecological studies would benefit from the ability to automatically identify species from acoustic recordings. The work presented in this article explores the ability of hidden Markov models to distinguish songs from five species of antbirds that share the same territory in a rainforest environment in Mexico. When only clean recordings were used, species recognition was nearly perfect, 99.5%. With noisy recordings, performance was lower but generally exceeding 90%. Besides the quality of the recordings, performance has been found to be heavily influenced by a multitude of factors, such as the size of the training set, the feature extraction method used, and number of states in the Markov model. In general, training with noisier data also improved recognition in test recordings, because of an increased ability to generalize. Considerations for improving performance, including beamforming with sensor arrays and design of preprocessing methods particularly suited for bird songs, are discussed. Combining sensor network technology with effective event detection and species identification algorithms will enable observation of species interactions at a spatial and temporal resolution that is simply impossible with current tools. Analysis of animal behavior through real-time tracking of individuals and recording of large amounts of data with embedded devices in remote locations is thus a realistic goal.  相似文献   
142.
The use of bubbles in applications such as surface chemistry, drug delivery, and ultrasonic cleaning etc. has been enormously popular in the past two decades. It has been recognized that acoustically-driven bubbles can be used to disturb the flow field near a boundary in order to accelerate physical or chemical reactions on the surface. The interactions between bubbles and a surface have been studied experimentally and analytically. However, most of the investigations focused on violently oscillating bubbles (also known as cavitation bubble), less attention has been given to understand the interactions between moderately oscillating bubbles and a boundary. Moreover, cavitation bubbles were normally generated in situ by a high intensity laser beam, little experimental work has been carried out to study the translational trajectory of a moderately oscillating bubble in an acoustic field and subsequent interactions with the surface. This paper describes the design of an ultrasonic test cell and explores the mechanism of bubble manipulation within the test cell. The test cell consists of a transducer, a liquid medium and a glass backing plate. The acoustic field within the multi-layered stack was designed in such a way that it was effectively one dimensional. This was then successfully simulated by a one dimensional network model. The model can accurately predict the impedance of the test cell as well as the mode shape (distribution of particle velocity and stress/pressure field) within the whole assembly. The mode shape of the stack was designed so that bubbles can be pushed from their injection point onto a backing glass plate. Bubble radial oscillation was simulated by a modified Keller–Miksis equation and bubble translational motion was derived from an equation obtained by applying Newton’s second law to a bubble in a liquid medium. Results indicated that the bubble trajectory depends on the acoustic pressure amplitude and initial bubble size: an increase of pressure amplitude or a decrease of bubble size forces bubbles larger than their resonant size to arrive at the target plate at lower heights, while the trajectories of smaller bubbles are less influenced by these factors. The test cell is also suitable for testing the effects of drag force on the bubble motion and for studying the bubble behavior near a surface.  相似文献   
143.
Here we investigate whether varying the diffusion-gradient orientation during a general waveform single pulsed-field gradient sequence improves sensitivity to the size of coherently oriented pores over having a fixed orientation. The experiment optimises the shape and the orientation of the gradient waveform in each of a set of measurements to minimise the expected variance of estimates of the parameters of a simple model. A key application motivating the work is measuring the size of axons in white matter. Thus, we use a two compartment white matter model with impermeable, single-radius cylinders, and search for waveforms that maximise the sensitivity to axon radius, intra-cellular volume fraction and diffusion constants. Output of the optimisation suggests the only benefit of allowing the gradient orientation to vary in the plane perpendicular to the cylinders is that we can gain perpendicular gradient strength by maximising two orthogonal gradients simultaneously. This suggests that varying orientation in itself does not increase the sensitivity to model parameters. On the other hand, the variation in a plane containing the parallel direction increases the sensitivity significantly because parallel sensitivity improves the diffusion constant estimates. However, we also find that similar improvement in the estimates can be achieved without optimising the orientation, but by having one measurement in the parallel and the rest in the perpendicular direction. The optimisation searches a very large space where it cannot hope to find the global minimum so we cannot make a categorical conclusion. However, given the consistency of the results in multiple reruns and variations of the experiments reported here, we can suggest that for probing coherently oriented systems, pulse sequences with variable orientation, such as double-wave vector sequences, do not offer more advantage than fixed orientation sequences with optimised shape. The advantage of varying orientation is however likely to emerge for more complex systems with dispersed pore orientation.  相似文献   
144.
We report about the results of our investigations on the alteration of optical properties of the superficial layer of human skin at four UV range wavelengths, 310, 318, 360 and 400 nm, by application of 35-200 nm-sized particles of titanium dioxide (TiO2), silicon (Si) and zinc oxide (ZnO). The theoretical study based on combination of the Mie theory and Monte Carlo simulations reveals the optimal sizes of the nanoparticles minimizing the light transmittance for the considered wavelengths.  相似文献   
145.
Using Laser-based Speckle-Interferometers, the shape of optically rough surfaces can be measured precisely and contactlessly from variable measuring distances even in regions of difficult access. This work is concerned with the integration of a micromirror array (MMA) into an electronic Speckle-Pattern-Interferometer. With the adaptive optics, it is intended to adapt the phasefront of a reference wave to critical surface areas of the measurement object. Yet, due to the topography of the MMA, diffraction effects occur which affect the phase and intensity of the generated wavefront. We demonstrate how these diffraction effects can be efficiently modelled by a Fraunhofer diffraction method. We compare the results of this model to theoretical data obtained by a numerical Fresnel diffraction model and to measurement data obtained from a measurement setup incorporating a multi mirror array.  相似文献   
146.
The general properties of the factorized S-matrix in two-dimensional space-time are considered. The relation between the factorization property of the scattering theory and the infinite number of conservation laws of the underlying field theory is discussed. The factorization of the total S-matrix is shown to impose hard restrictions on two-particle matrix elements: they should satisfy special identities, the so-called factorization equations. The general solution of the unitarity, crossing and factorization equations is found for the S-matrices having isotopic O(N)-symmetry. The solution turns out to have different properties for the cases N = 2 and N 3. For N = 2 the general solution depends on one parameter (of coupling constant type), whereas the solution for N 3 has no parameters but depends analytically on N. The solution for N = 2 is shown to be an exact soliton S-matrix of the sine-Gordon model (equivalently the massive Thirring model). The total S-matrix of the model is constructed. In the case of N 3 there are two “minimum” solutions, i.e., those having a minimum set of singularities. One of them is shown to be an exact S matrix of the quantum O(N)-symmetric nonlinear σ-model, the other is argued to describe the scattering of elementary particles of the Gross-Neveu model.  相似文献   
147.
The application of a dissipative Galerkin scheme to the numerical solution of the Korteweg de Vries (KdV) and Regularised Long Wave (RLW) equations, is investigated. The accuracy and stability of the proposed schemes is derived using a localised Fourier analysis. With cubic splines as basis functions, the errors in the numerical solutions of the KdV equation for different mesh-sizes and different amounts of dissipation is determined. It is shown that the Galerkin scheme for the RLW equation gives rise to much smaller errors (for a given mesh-size), and allows larger steps to be taken for the integrations in time (for a specified error tolerance). Also, the interaction of two solitons is compared for the KdV and RLW equations, and several differences in their behaviour are found.  相似文献   
148.
149.
The intensity of surface enhanced Raman scattering from benzoic acid derivatives on mildly roughened, thermally evaporated Ag films shows a remarkably strong dependence on metal grain size. Large grained (slowly deposited) films give a superior response, by up to a factor of 10, to small grained (quickly deposited) films, with films of intermediate grain size yielding intermediate results. The optical field amplification underlying the enhancement mechanism is due to the excitation of surface plasmon polaritons (SPPs). Since surface roughness characteristics, as determined by STM, remain relatively constant as a function of deposition rate, it is argued that the contrast in Raman scattering is due to differences in elastic grain boundary scattering of SPPs (leading to different degrees of internal SPP damping), rather than differences in the interaction of SPPs with surface inhomogeneities.  相似文献   
150.
The classical (first integral) methods of studying restrictions on the possible motion of gravitationally interacting bodies are reviewed. The simple and flexible inequality method is extended to a similar approach to the relationship between possible forbidden motion and (asymptotic) symmetries in the relativistic few-body problem. This extended method is used to reproduce the standard results of bounded motion for a test particle in a Schwarzschild geometry. The existence of bounded motion is shown for the general relativistic few-body problem and the difficulties in determining such bounded motion is analysed. The use of this approach to obtaining a relativistic alternative to the classical Roche lobe analysis in contact binaries is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号