首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15504篇
  免费   637篇
  国内免费   145篇
化学   10072篇
晶体学   50篇
力学   329篇
综合类   1篇
数学   2928篇
物理学   2906篇
  2023年   142篇
  2022年   291篇
  2021年   348篇
  2020年   421篇
  2019年   499篇
  2018年   381篇
  2017年   291篇
  2016年   598篇
  2015年   564篇
  2014年   548篇
  2013年   913篇
  2012年   1078篇
  2011年   1276篇
  2010年   677篇
  2009年   562篇
  2008年   911篇
  2007年   833篇
  2006年   842篇
  2005年   774篇
  2004年   605篇
  2003年   470篇
  2002年   436篇
  2001年   239篇
  2000年   173篇
  1999年   181篇
  1998年   157篇
  1997年   165篇
  1996年   167篇
  1995年   144篇
  1994年   113篇
  1993年   104篇
  1992年   86篇
  1991年   76篇
  1990年   66篇
  1989年   43篇
  1988年   45篇
  1987年   49篇
  1986年   45篇
  1985年   72篇
  1984年   58篇
  1983年   34篇
  1982年   58篇
  1981年   49篇
  1980年   45篇
  1979年   40篇
  1978年   44篇
  1977年   43篇
  1976年   47篇
  1974年   34篇
  1973年   29篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
151.
A simple and efficient preparation of a number of hybrid linear‐branched PEG esters are described. The polymers are generated by direct coupling of PEG–carboxylic acids and a variety of pentaerythritol ethoxylates using carbon tetrabromide catalyst.  相似文献   
152.
153.
An investigation of etching behaviors for Mo and Al2O3 thin films in O2/Cl2/Ar inductively coupled plasmas at constant gas pressure (6 mTorr), input power (700 W) and bias power (200 W) was carried out. It was found that an increase in Ar mixing ratio for Cl2/Ar plasma results in non-monotonic etching rates with the maximums of 160 nm/min at 60 % Ar for Mo and 27 nm/min at 20 % Ar for Al2O3. The addition of O2 in the Cl2/Ar plasma causes the non-monotonic Mo etching rate (max. 320 nm/min at 40–45 % O2) while the Al2O3 etching rate decreases monotonically. The model-based analysis of etching kinetics allows one to relate the non-monotonic etching rates in Cl2/Ar plasma to the change in the etching regime from the ion-flux-limited mode (at low Ar mixing ratios) to the neutral-flux-limited mode (for high Ar mixing ratios). In the Cl2/O2/Ar plasma, the non-monotonic Mo etching rate is probably due to the change in reaction probability.  相似文献   
154.
A new high-performance liquid chromatography (HPLC) method for the sensitive simultaneous determination of hydrazine (Hy), monomethylhydrazine (MMH) and 1,1-dimethylhydrazine (UDMH) based upon the derivatization of hydrazines with naphthalene-2,3-dialdehyde and the separation of the derivatives on Zorbax Eclipse AAA column in a single chromatographic run under acidic conditions (pH 2.4) was developed. Hydrazine and monomethylhydrazine derivatives were found to be strongly fluorescent at λex?=?273?nm, λem?=?500?nm. It was shown that UDMH derivative can be detected as non-fluorescent hydrazone at 290?nm by UV-detection. Limits of detection were 0.05?µg?·?L?1 for Hy and MMH, and 1?µg?·?L?1 for UDMH for the injection volume of 100?µL. The method was validated for water sample analysis. It proved to be selective, accurate and precise with the supplementary advantage of the simple and rapid sample preparation.  相似文献   
155.
The synthesis and characterization of the first series of low‐coordinate bis(terphenyl) complexes of the Group 12 metals, [Zn(2,6‐Naph2C6H3)2] ( 1 ), [Cd(OEt2)(2,6‐Naph2C6H3)2] ( 2 ) and [Hg(OEt2)(2,6‐Naph2C6H3)2] ( 3 ) (Naph=1‐C10H7) are described. The naphthyl substituents of the terphenyl ligands confer considerable steric bulk, and as a result of limited flexibility introduce multiple conformations to these unusual systems. In the solid state, complex 1 features a two‐coordinate Zn centre with the ligands oriented in a syn/anti conformation, whereas the three‐coordinate distorted T‐shaped complexes 2 and 3 feature the ligands in the syn/syn configurations. The results of DFT calculations are in good agreement with the solid‐state configurations for these complexes and support the spectroscopic measurements, which indicate several conformers in solution.  相似文献   
156.
For the first time, the adaptability of the C?C double bond as a versatile precursor for the postsynthetic modification (PSM) of microporous materials was extensively investigated and evaluated. Therefore, an olefin‐tagged 4,4′‐bipyridine linker was synthesized and successfully introduced as pillar linker within a 9,10‐triptycenedicarboxylate (TDC) zinc paddle‐wheel metal–organic framework (MOF) through microwave‐assisted synthesis. Different reactions, predominately used in organic chemistry, were tested, leading to the development of new postsynthetic reactions for the functionalization of solid materials. The postsynthetic oxidation of the olefin side groups applying osmium tetroxide (OsO4) as a catalyst led to the formation of a microporous material with free vicinal diol functionalities. The epoxidation with dimethyldioxirane (DMDO) enabled the synthesis of epoxy‐functionalized MOFs. In addition to that, reaction procedures for a postsynthetic hydroboration with borane dimethyl sulfide as well as a photoinduced thiol–ene click reaction with ethyl mercaptan were developed. For all of these PSMs, yields of more than 90 % were obtained, entirely maintaining the crystallinity of the MOFs. Since the direct introduction of the corresponding groups by means of pre‐synthetic approaches is hardly possible, these new PSMs are useful tools for the functionalization of porous solids towards applications such as selective adsorption, separation, and catalysis.  相似文献   
157.
Let f be a germ of an analytic function at infinity that can be analytically continued along any path in the complex plane deprived of a finite set of points, \({f \in \mathcal{A}(\bar{\mathbb{C}} \setminus A)}\), \({\# A< \infty}\). J. Nuttall has put forward the important relation between the maximal domain of f where the function has a single-valued branch and the domain of convergence of the diagonal Padé approximants for f. The Padé approximants, which are rational functions and thus single-valued, approximate a holomorphic branch of f in the domain of their convergence. At the same time most of their poles tend to the boundary of the domain of convergence and the support of their limiting distribution models the system of cuts that makes the function f single-valued. Nuttall has conjectured (and proved for many important special cases) that this system of cuts has minimal logarithmic capacity among all other systems converting the function f to a single-valued branch. Thus the domain of convergence corresponds to the maximal (in the sense of minimal boundary) domain of single-valued holomorphy for the analytic function \({f\in\mathcal{A}(\bar{\mathbb{C}} \setminus A)}\). The complete proof of Nuttall’s conjecture (even in a more general setting where the set A has logarithmic capacity 0) was obtained by H. Stahl. In this work, we derive strong asymptotics for the denominators of the diagonal Padé approximants for this problem in a rather general setting. We assume that A is a finite set of branch points of f which have the algebro-logarithmic character and which are placed in a generic position. The last restriction means that we exclude from our consideration some degenerated “constellations” of the branch points.  相似文献   
158.
We report a simple approach for enumeration of non-labile oxygen atoms in individual molecules of dissolved organic matter (DOM), using acid-catalyzed 16O/18O exchange and ultrahigh-resolution Fourier-transform ion-cyclotron-resonance mass spectrometry (FTICR-MS). We found that by dissolving DOM in H2 18O at 95 °C for 20 days it is possible to replace all oxygen atoms of DOM molecules (excluding oxygen from ether groups) with 18O. The number of exchanges in each molecule can be determined using high-resolution FTICR. Using the proposed method we identified the number of non-labile oxygen atoms in 231 molecules composing DOM. Also, using a previously developed hydrogen–deuterium (H/D)-exchange approach we identified the number of labile hydrogen atoms in 450 individual molecular formulas. In addition, we observed that several backbone hydrogen atoms can be exchanged for deuterium under acidic conditions. The method can be used for structural and chemical characterization of individual DOM molecules, comparing different DOM samples, and investigation of biological pathways of DOM in the environment.  相似文献   
159.
Alexander Janz  Peter Betsch 《PAMM》2015,15(1):205-206
In the present paper we consider structure-preserving integration methods in the context of mixed finite elements. The used low-order mixed finite elements typically exhibit improved coarse mesh accuracy. On the other hand energy-momentum (EM) consistent time-stepping schemes have been developed in the realm of nonlinear structural dynamics to enhance the numerical stability properties. EM schemes typically exhibit superior robustness and thus offer the possibility to use large time steps while still producing physically meaningful results. Accordingly, combining mixed finite element discretizations in space with EM consistent discretizations in time shows great promise for the design of numerical methods with superior coarse mesh accuracy in space and time. Starting with a general Hu-Washizu-type variational formulation we develop a second-order accurate structure-preserving integration scheme. The present approach is applicable to a large number of mixed finite element formulations. As sample application we deal with a specific mixed shell element. Numerical examples dealing with large deformations will show the improved coarse mesh accuracy in space and time of the advocated approach. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
160.
The main goal of the present work is the comparison of the performance of a least-squares mixed finite element formulation where the solution variables (displacements and stresses) are interpolated using different approximation spaces. Basis for the formulation is a weak form resulting from the minimization of a least-squares functional, compare e.g. [1]. As suitable functions for standard interpolation polynomials of Lagrangian type are chosen. For the conforming discretization of the Sobolev space vector-valued Raviart-Thomas interpolation functions, see also [2], are used. The resulting elements are named as PmPk and RTmPk. Here m (stresses) and k (displacements) denote the approximation order of the particular interpolation function. For the comparison we consider a two-dimensional cantilever beam under plain strain conditions and small strain assumptions. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号