首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2696篇
  免费   112篇
  国内免费   31篇
化学   1818篇
晶体学   16篇
力学   74篇
数学   409篇
物理学   522篇
  2023年   27篇
  2022年   39篇
  2021年   56篇
  2020年   66篇
  2019年   82篇
  2018年   55篇
  2017年   58篇
  2016年   107篇
  2015年   56篇
  2014年   80篇
  2013年   144篇
  2012年   174篇
  2011年   205篇
  2010年   122篇
  2009年   83篇
  2008年   144篇
  2007年   199篇
  2006年   168篇
  2005年   131篇
  2004年   117篇
  2003年   87篇
  2002年   59篇
  2001年   34篇
  2000年   38篇
  1999年   43篇
  1998年   23篇
  1997年   32篇
  1996年   29篇
  1995年   17篇
  1994年   12篇
  1993年   24篇
  1992年   20篇
  1991年   10篇
  1990年   8篇
  1989年   16篇
  1988年   18篇
  1987年   8篇
  1985年   21篇
  1984年   17篇
  1983年   6篇
  1982年   10篇
  1981年   21篇
  1980年   14篇
  1979年   13篇
  1978年   18篇
  1977年   9篇
  1976年   10篇
  1974年   7篇
  1973年   6篇
  1887年   6篇
排序方式: 共有2839条查询结果,搜索用时 156 毫秒
61.
Fossil fuels are expected to be the major source of energy for the next few decades. However, combustion of nonrenewable resources leads to the release of large quantities of CO2, the primary greenhouse gas. Notably, the concentration of CO2 in the atmosphere is increasing annually at an astounding rate. Electrochemical CO2 reduction (ECR) to value-added fuels and chemicals using electricity from intermittent renewable energy sources is a carbon-neutral method to alleviate anthropogenic CO2 emissions. Despite the steady progress in the selective generation of C1 products (CO and formic acid), the production of multi-carbon species still suffers from low selectivity and efficiency. As an ECR product, ethylene (C2H4) has a higher energy density than do C1 species and is an important industrial feedstock in high demand. However, the conversion of CO2 to C2H4 is plagued by low productivity and large overpotential, in addition to the severe competing hydrogen evolution reaction (HER) during the ECR. To address these issues, the design and development of advanced electrocatalysts are critical. Here, we demonstrate fine-tuning of ECR to C2H4 by taking advantage of the prominent interaction of Cu with shape-controlled CeO2 nanocrystals, that is, cubes, rods, and octahedra predominantly covered with (100), (110), and (111) surfaces, respectively. We found that the selectivity and activity of the ECR depended strongly on the exposed crystal facets of CeO2. The overall ECR Faradaic efficiency (FE) over Cu/CeO2(110) (FE ≈ 56.7%) surpassed that of both Cu/CeO2(100) (FE ≈ 51.5%) and Cu/CeO2(111) (FE ≈ 48.4%) in 0.1 mol·L-1 KHCO3 solutions with an H-type cell. This was in stark contrast to the exclusive occurrence of the HER over pure carbon paper, CeO2(100), CeO2(110), and CeO2(111). In particular, the FE toward C2H4 formation and the partial current density increased in the sequence Cu/CeO2(111) < Cu/CeO2(100) < Cu/CeO2(110) within applied bias potentials from -1.00 to -1.15 V (vs. the reversible hydrogen electrode), reaching 39.1% over Cu/CeO2(110) at a mild overpotential (1.13 V). The corresponding values for Cu/CeO2(100) and Cu/CeO2(111) were FEC2H4 ≈ 31.8% and FEC2H4 ≈ 29.6%, respectively. The C2H4 selectivity was comparable to that of many reported Cu-based electrocatalysts at similar overpotentials. Furthermore, the FE for C2H4 remained stable even after 6 h of continuous electrolysis. The superior ECR activity of Cu/CeO2(110) to yield C2H4 was attributed to the metastable (110) surface, which not only promoted the effective adsorption of CO2 but also remarkably stabilized Cu+, thereby boosting the ECR to produce C2H4. This work offers an alternative strategy to enhance the ECR efficiency by crystal facet engineering.  相似文献   
62.
[reaction: see text] A detailed study concerning the formation of Meisenheimer adducts in biphasic solvent systems is described. The process relies on utilizing a significantly lipophilic quaternary ammonium salt to transfer a nucleophile (e.g., hydroxide ion) between an aqueous and organic layer containing the electron-deficient aromatic substrate. Provided that the organic layer is sufficiently apolar, the resultant Meisenheimer adduct is considerably stable, likely the result of a strong ion-pairing interaction between the large polarizable anionic complex and the diffusively charged tetraalkylammonium cation. Using the diethylamide of 3,5-dinitrobenzoic acid as a model compound, the influence of ion-pairing reagents and solvents on adduct formation was investigated. Dramatically increased equilibrium formation of the Meisenheimer adduct is observed in the biphasic medium (e.g., benzene/2 M NaOH) relative to the same adduct generated in single-phase systems. Spectroscopic studies on this adduct are consistent with those conducted in single-phase polar or dipolar aprotic solvents. The methodology is extended to performing highly enantioselective biphasic kinetic resolutions of several racemic electron-deficient amides.  相似文献   
63.
We present an in-flight fluorescence detection scheme for molecular beams which is applied to determine the enthalpy of sublimation of dye molecules. We investigate tetraphenylporphyrin (TPP), porphine, and nile red, which are believed to be suitable candidates for molecular de Broglie wave interferometry. The measured values are H(sub)(TPP)=142+/-3 kJ/mol, H(sub)(porphine)=87+/-3 kJ/mol, and H(sub)(nile red)=66+/-2 kJ/mol. For TPP, sublimation enthalpies differ in the literature by more than a factor of 2. Our measurements confirm a value at the lower end of this scale. We discuss changes in the character of the molecular flow with the source temperature as a prime reason for discrepancies in the published data.  相似文献   
64.
The hydride complex [Pt(dmpe)2H]+ (dmpe = 1,2-bis(dimethylphosphino)ethane) reversibly transfers H- to the rhenium carbonyl complex [CpRe(PMe3)(NO)(CO)]+, giving the formyl CpRe(PMe3)(NO)(CHO). From the equilibrium constant for the hydride transfer (16.2), the DeltaGdegrees for the reaction was determined (-1.6 kcal/mol), as was the hydride-donating ability of the formyl (44.1 kcal/mol). The hydride-donating ability, DeltaGdegrees(H-), is defined as the energy required to release the hydride ion into solution by the formyl complex [i.e. M(CHO) right arrow M(CO)+ + H-]. Subsequently, the hydride-donating ability of a series of formyl complexes was determined, ranging from 44 to 55 kcal/mol. With use of this information, two rhenium carbonyl complexes, [CpRe(NO)(CO)2]+ and [Cp*Re(NO)(CO)2]+, were hydrogenated to formyls, employing [Pt(dmpp)2]2+ and Proton-Sponge. Finally, the E(1/2)(I/0) values for five rhenium carbonyl complexes were measured by cyclic voltammetry. Combined with the known DeltaGdegrees(H-) values for the complexes, the hydrogen atom donating abilities could be determined. These values were all found to be approximately 50 kcal/mol.  相似文献   
65.
The reactivity of the epoxy-fulvene 1 with various nucleophiles has been examined. It is a versatile Intermediate for the preparation of spiro[4.2]hepta-1,3-diene synthons via nucleophilic addition to the C6 position followed by intramolecular cyclization of the substituted cyclopentadiene anion generated in situ.  相似文献   
66.
Electrochemical investigations of the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have been conducted in a Ca2+-containing dimethyl sulfoxide electrolyte. While the ORR appears irreversible, the introduction of a tetrabutylammonium perchlorate (TBAClO4) co-salt in excess concentrations results in the gradual appearance of a quasi-reversible OER process. Combining the results of systematic cyclic voltammetry investigations, the degree of reversibility depends on the ion pair competition between Ca2+ and TBA+ cations to interact with generated superoxide (O2). When TBA+ is in larger concentrations, and large reductive overpotentials are applied, a quasi-reversible OER peak emerges with repeated cycling (characteristic of formulations without Ca2+ cations). In situ Raman microscopy and rotating ring-disc electrode (RRDE) experiments revealed more about the nature of species formed at the electrode surface and indicated the progressive evolution of a charge storage mechanism based upon trapped interfacial redox. The first electrochemical step involves generation of O2, followed primarily by partial passivation of the surface by CaxOy product formation (the dominant initial reaction). Once this product matrix develops, the subsequent formation of TBA+--O2 is contained within the CaxOy product interlayer at the electrode surface and, consequently, undergoes a facile oxidation reaction to regenerate O2.

An interlayer product of oxygen reduction with Ca2+/TBA+ yields a quasi-reversible oxygen evolution reaction by inducing a trapped interfacial redox process.  相似文献   
67.
The fragmentation reactions of deprotonated N-benzoyl peptides, specifically hippurylglycine, hippurylglyclyclycine, and hippurylphenylalanine (hippuryl = N-benzoylGly) have been studied using MS2 and MS3 experiments as well as deuterium labeling. A major fragment ion is observed at m/z 160 ([C9H6NO2]-) which, upon collisional activation, mainly eliminates CO2 indicating that the two oxygen atoms have become bonded to the same carbon. This observation is rationalized in terms of formation of deprotonated 2-phenyl-5-oxazolone. Various pathways to the deprotonated oxazolone have been elucidated through MS3 experiments. Fragmentation of deprotonated N-acetylalanylalanine gives a relatively weak signal at m/z 112 which, upon collisional activation, fragments, in part, by loss of CO2 leading to the conclusion that the m/z 112 ion is deprotonated 2,4-dimethyl-5-oxazolone.  相似文献   
68.
The O?˙ chemical ionization mass spectrri of the C8H10 alkylbenzenes, o-, m-. andp -xylene and ethylbenzene, show formation of [M ? H + O]?, [M ? H]?, [M ? H2]?˙ and, for the xylenes, [M ? CH3 + O]? as primary reaction products; the relative importance of these products depends on the isomer. However, [OH]? is a primary product from reaction of O?˙ with both the C8H10 isomers and hydrogen-containing impurities; [OH]? reacts further with the alkylbenzenes to produce [M ? H]? with the result that the chemical ionization mass spectra depend on experimental conditions such as sample size and the presence of impurities. The collision-induced charge inversion mass spectra of the [M ? H + O]? and [M ? H]? products allow only distinction of ethylbenzene from the xylenes. However, the collision-induced charge inversion mass spectra of the [M ? H2]?˙ ions show differences which allow identification of each isomer.  相似文献   
69.
The charge exchange mass spectra of a selection of C5-C7 ketones have been measured using [CS2]+˙, [COS]+˙ and [N2O]+. as reagent ions. The low energy charge exchange with [CS2]+˙ or [COS]+˙ provides simple primary ion mass spectra, which readily permit structure elucidation in contrast to metastable ion spectra. In several cases, isomer distinction is easier from the charge exchange mass spectra than from the electron impact mass spectra. The energy transfer from [N2O]+˙ is sufficiently high for complex spectra resembling electron impact mass spectra to be obtained.  相似文献   
70.
Using specifically labelled compounds we have made a detailed study of the source of the hydrogen transferred in the elimination of C3H6 from the molecular ion of phenyln-propyl ether following electron impact ionization and from the protonated (and ethylated) molecule following chemical ionization. The migrating hydrogen originates from all three positions of the npropyl group but not in the ratio expected for randomization of the alkyl hydrogens prior to transfer. The source of the migrating hydrogen is similar for both electron impact ionization and chemical ionization, indicating that the factors governing the rearrangement are the same for both modes of ionization. From a comparison of the results for labelled 2,6-dimethyl phenyl n-propyl ethers with the results for the unsubstituted ether it is concluded that hydrogen transfer occurs only to the ether oxygen and not to the phenyl ring. A two-step mechanism involving a set of competing reversible hydrogen transfer reactions followed by C? O bond cleavage is proposed to explain the results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号