首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2974篇
  免费   96篇
  国内免费   24篇
化学   2088篇
晶体学   15篇
力学   67篇
数学   395篇
物理学   529篇
  2023年   28篇
  2022年   53篇
  2021年   56篇
  2020年   65篇
  2019年   81篇
  2018年   63篇
  2017年   66篇
  2016年   106篇
  2015年   56篇
  2014年   81篇
  2013年   151篇
  2012年   184篇
  2011年   203篇
  2010年   111篇
  2009年   78篇
  2008年   148篇
  2007年   187篇
  2006年   170篇
  2005年   132篇
  2004年   114篇
  2003年   92篇
  2002年   58篇
  2001年   41篇
  2000年   34篇
  1999年   40篇
  1998年   21篇
  1997年   27篇
  1996年   28篇
  1995年   17篇
  1994年   17篇
  1993年   20篇
  1992年   22篇
  1990年   14篇
  1989年   23篇
  1988年   21篇
  1985年   19篇
  1984年   16篇
  1981年   19篇
  1980年   19篇
  1978年   19篇
  1977年   16篇
  1976年   18篇
  1974年   15篇
  1973年   21篇
  1972年   22篇
  1971年   23篇
  1969年   24篇
  1967年   19篇
  1966年   15篇
  1965年   15篇
排序方式: 共有3094条查询结果,搜索用时 15 毫秒
41.
In conventional biomedical photoacoustic imaging systems, a pulsed laser is used to generate time-of-flight acoustic information of the subsurface features. This paper reports the theoretical and experimental development of a new frequency-domain (FD) photo-thermo-acoustic (PTA) principle featuring frequency sweep (chirp) and heterodyne modulation and lock-in detection of a continuous-wave laser source at 1064 nm wavelength. PTA imaging is a promising new technique which is being developed to detect tumor masses in turbid biological tissue. Owing to the linear relationship between the depth of acoustic signal generation and the delay time of signal arrival to the transducer, information specific to a particular depth can be associated with a particular frequency in the chirp signal. Scanning laser modulation with a linear frequency sweep method preserves the depth-to-delay time linearity and recovers FD-PTA signals from a range of depths. Preliminary results performed on rubber samples and solid tissue phantoms indicate that the FD-PTA technique has the potential to be a reliable tool for biomedical depth-profilometric imaging.  相似文献   
42.
An excited-state atom whose emitted light is backreflected by a distant mirror can experience trapping forces, because the presence of the mirror modifies both the electromagnetic vacuum field and the atom's own radiation reaction field. We demonstrate this mechanical action using a single trapped barium ion. We observe the trapping conditions to be notably altered when the distant mirror is translated across an optical wavelength. The well-localized barium ion enables the spatial dependence of the forces to be measured explicitly. The experiment has implications for quantum information processing and may be regarded as the most elementary optical tweezers.  相似文献   
43.
We consider thermodynamic and transport properties of a long granular array with strongly connected grains (intergrain conductance g>1). We find that the system's conductance and differential capacitance exhibits activated behavior, approximately exp([-T(*)/T]. The gap T(*) represents the energy needed to create a long single-electron charge soliton propagating through the array. This scale is parametrically larger than the energy at which conventional perturbation theory breaks down.  相似文献   
44.
Resonant-cavity-enhanced photodetectors and LEDs in the mid-infrared   总被引:1,自引:0,他引:1  
In this paper we outline the use of resonant-cavity enhancement for increasing the exterior coupling efficiency of photodetectors and light-emitting diodes (LEDs) in the mid-infrared (MIR) spectral region. This method is potentially very important in the MIR because encapsulation is not presently feasible due to the lack of suitable materials. Among other potential applications, resonant-cavity-enhanced (RCE) photodetectors and LEDs could be particularly suitable for greenhouse gas detection because of their ‘pre-tunable’ spectrally narrowed resonantly enhanced peaks. We also present the optical characterization of an InAs RCE photodetector aimed at the detection of methane gas (λ≈3.3 μm), and an InAs/InAs0.91Sb0.09 resonant-cavity LED (RCLED) aimed at carbon dioxide gas (λ≈4.2 μm). The high peak responsivity of the RCE photodetector was 34.7 A/W at λ=3.14 μm, and the RCLED peaked at λ=3.96 μm. These are among the longest operating wavelengths for III–V RCE photodetectors and RCLEDs reported in the literature.  相似文献   
45.
Paths to synchronization on complex networks   总被引:1,自引:0,他引:1  
The understanding of emergent collective phenomena in natural and social systems has driven the interest of scientists from different disciplines during decades. Among these phenomena, the synchronization of a set of interacting individuals or units has been intensively studied because of its ubiquity in the natural world. In this Letter, we show how for fixed coupling strengths local patterns of synchronization emerge differently in homogeneous and heterogeneous complex networks, driving the process towards a certain global synchronization degree following different paths. The dependence of the dynamics on the coupling strength and on the topology is unveiled. This study provides a new perspective and tools to understand this emerging phenomena.  相似文献   
46.
We demonstrate extended axial flow velocity detection range in a time-domain Doppler optical coherence tomography (DOCT) system using a modified Kasai velocity estimator with computations in both the axial and transverse directions. For a DOCT system with an 8 kHz rapid-scanning optical delay line, bidirectional flow experiments showed a maximum detectable speed of >56 cm/s using the axial Kasai estimator without the occurrence of aliasing, while the transverse Kasai estimator preserved the approximately 7 microm/s minimum detectable velocity to slow flow. By using a combination of transverse Kasai and axial Kasai estimators, the velocity detection dynamic range was over 100 dB. Through a fiber-optic endoscopic catheter, in vivoM-mode transesophageal imaging of the pulsatile blood flow in rat aorta was demonstrated, for what is for the first time to our knowledge, with measured peak systolic blood flow velocity of >1 m/s, while maintaining good sensitivity to detect aortic wall motion at <2 mm/s, using this 2D Kasai technique.  相似文献   
47.
Remote detection nuclear magnetic resonance and magnetic resonance imaging can be used to study fluid flow and dispersion in a porous medium from a purely Eulerian point of view (i.e., in a laboratory frame of reference). Information about fluid displacement is obtained on a macroscopic scale in a long-time regime, while local velocity distributions are averaged out. It is shown how these experiments can be described using the common flow propagator formalism and how experimental data can be analyzed to obtain effective porosity, flow velocity inside the porous medium, fluid dispersion and flow tracing of fluid.  相似文献   
48.
49.
The transmission property of metallic films with two-dimensional hole arrays is studied experimentally and numerically. For a triangular lattice subwavelength hole array in a 150 nm thick Ag film, both cavity resonance and planar surface modes are identified as the sources of enhanced optical transmissions. Semi-analytical models are developed for calculating the dispersion relation of the cavity resonant mode. They agree well with the experimental results and full-wave numerical calculations. Strong interaction between the cavity resonant mode and surface modes is also observed.  相似文献   
50.
Acoustic energy harvesting using an electromechanical Helmholtz resonator   总被引:3,自引:0,他引:3  
This paper presents the development of an acoustic energy harvester using an electromechanical Helmholtz resonator (EMHR). The EMHR consists of an orifice, cavity, and a piezoelectric diaphragm. Acoustic energy is converted to mechanical energy when sound incident on the orifice generates an oscillatory pressure in the cavity, which in turns causes the vibration of the diaphragm. The conversion of acoustic energy to electrical energy is achieved via piezoelectric transduction in the diaphragm of the EMHR. Moreover, the diaphragm is coupled with energy reclamation circuitry to increase the efficiency of the energy conversion. Lumped element modeling of the EMHR is used to provide physical insight into the coupled energy domain dynamics governing the energy reclamation process. The feasibility of acoustic energy reclamation using an EMHR is demonstrated in a plane wave tube for two power converter topologies. The first is comprised of only a rectifier, and the second uses a rectifier connected to a flyback converter to improve load matching. Experimental results indicate that approximately 30 mW of output power is harvested for an incident sound pressure level of 160 dB with a flyback converter. Such power level is sufficient to power a variety of low power electronic devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号