首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1339篇
  免费   45篇
  国内免费   4篇
化学   1007篇
晶体学   2篇
力学   22篇
数学   204篇
物理学   153篇
  2024年   3篇
  2023年   15篇
  2022年   54篇
  2021年   85篇
  2020年   46篇
  2019年   34篇
  2018年   28篇
  2017年   15篇
  2016年   42篇
  2015年   39篇
  2014年   43篇
  2013年   76篇
  2012年   86篇
  2011年   99篇
  2010年   53篇
  2009年   35篇
  2008年   84篇
  2007年   97篇
  2006年   65篇
  2005年   74篇
  2004年   63篇
  2003年   58篇
  2002年   45篇
  2001年   28篇
  2000年   8篇
  1999年   13篇
  1998年   10篇
  1997年   9篇
  1996年   9篇
  1995年   9篇
  1994年   9篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1990年   4篇
  1989年   4篇
  1988年   5篇
  1987年   3篇
  1986年   3篇
  1985年   5篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1388条查询结果,搜索用时 15 毫秒
91.
Reflection electron energy loss spectroscopy (REELS) spectra were measured for seven insulating organic compounds (DNA, Irganox 1010, Kapton, polyethylene [PE], poly(methyl methacrylate) [PMMA], polystyrene [PS] and polytetrafluoroethylene [PTFE]). Optical constants and energy band gaps were extracted from the measured REELS spectra after elimination of multiple electron scattering via a deconvolution and fitting the normalised single scattering energy loss spectra to Drude and Drude–Lindhard model dielectric functions, constrained by the Kramers–Kronig sum and f-sum rules. Satisfactory agreement is found for those optical constants for which literature data exists. For PTFE, the observed features in the optical data correspond to its electronic structure.  相似文献   
92.
Food spoilage makes foods undesirable and unacceptable for human use. The preservation of food is essential for human survival, and different techniques were initially used to limit the growth of spoiling microbes, e.g., drying, heating, salting, or fermentation. Water activity, temperature, redox potential, preservatives, and competitive microorganisms are the most important approaches used in the preservation of food products. Preservative agents are generally classified into antimicrobial, antioxidant, and anti-browning agents. On the other hand, artificial preservatives (sorbate, sulfite, or nitrite) may cause serious health hazards such as hypersensitivity, asthma, neurological damage, hyperactivity, and cancer. Thus, consumers prefer natural food preservatives to synthetic ones, as they are considered safer. Polyphenols have potential uses as biopreservatives in the food industry, because their antimicrobial and antioxidant activities can increase the storage life of food products. The antioxidant capacity of polyphenols is mainly due to the inhibition of free radical formation. Moreover, the antimicrobial activity of plants and herbs is mainly attributed to the presence of phenolic compounds. Thus, incorporation of botanical extracts rich in polyphenols in perishable foods can be considered since no pure polyphenolic compounds are authorized as food preservatives. However, individual polyphenols can be screened in this regard. In conclusion, this review highlights the use of phenolic compounds or botanical extracts rich in polyphenols as preservative agents with special reference to meat and dairy products.  相似文献   
93.
DC-SIGN, a C-type lectin exclusively expressed on dendritic cells (DCs), plays an important role in pathogen recognition by binding with high affinity to a large variety of microorganisms. Recent experimental evidence points to a direct relation between the function of DC-SIGN as a viral receptor and its spatial arrangement on the plasma membrane. We have investigated the nanoscale organization of fluorescently labeled DC-SIGN on intact isolated DCs by means of near-field scanning optical microscopy (NSOM) combined with single-molecule detection. Fluorescence spots of different intensity and size have been directly visualized by optical means with a spatial resolution of less than 100 nm. Intensity- and size-distribution histograms of the DC-SIGN fluorescent spots confirm that approximately 80 % of the receptors are organized in nanosized domains randomly distributed on the cell membrane. Intensity-size correlation analysis revealed remarkable heterogeneity in the molecular packing density of the domains. Furthermore, we have mapped the intermolecular organization within a dense cluster by means of sequential NSOM imaging combined with discrete single-molecule photobleaching. In this way we have determined the spatial coordinates of 13 different individual dyes, with a localization accuracy of 6 nm. Our experimental observations are all consistent with an arrangement of DC-SIGN designed to maximize its chances of binding to a wide range of microorganisms. Our data also illustrate the potential of NSOM as an ultrasensitive, high-resolution technique to probe nanometer-scale organization of molecules on the cell membrane.  相似文献   
94.
Among vegetable oils, virgin olive oil (VOO) has nutritional and sensory characteristics that to make it unique and a basic component of the Mediterranean diet. The importance of VOO is mainly attributed both to its high content of oleic acid a balanced contribution quantity of polyunsaturated fatty acids and its richness in phenolic compounds, which act as natural antioxidants and may contribute to the prevention of several human diseases. The polar phenolic compounds of VOO belong to different classes: phenolic acids, phenyl ethyl alcohols, hydroxy-isochromans, flavonoids, lignans and secoiridoids. This latter family of compounds is characteristic of Oleaceae plants and secoiridoids are the main compounds of the phenolic fraction. Many agronomical and technological factors can affect the presence of phenols in VOO. Its shelf life is higher than other vegetable oils, mainly due to the presence of phenolic molecules having a catechol group, such as hydroxytyrosol and its secoiridoid derivatives. Several assays have been used to establish the antioxidant activity of these isolated phenolic compounds. Typical sensory gustative properties of VOO, such as bitterness and pungency, have been attributed to secoiridoid molecules. Considering the importance of the phenolic fraction of VOO, high performance analytical methods have been developed to characterize its complex phenolic pattern. The aim of this review is to realize a survey on phenolic compounds of virgin olive oils bearing in mind their chemical-analytical, healthy and sensory aspects. In particular, starting from the basic studies, the results of researches developed in the last ten years will be focused.  相似文献   
95.
The main light-harvesting fraction from Pelvetia canaliculata was isolated on a sucrose density gradient from digitonin-solubilized chloroplasts. After further solubilization by dodecyl maltoside, the bulk fraction was separated into two subunits by preparative isoelectric focusing. The more acidic brown fraction was mainly composed of 22 kDa polypeptides having an apparent pI of 4.55. Its pigment composition was very simple, containing chlorophyll (Chi) a, Chi c and fucoxanthin. The in vivo spectral properties of fucoxanthin, namely a shift in light absorption to the green and efficient energy transmission to Chi a, were conserved in this subunit. No xanthophyll associated with photoprotection was found in this band, even when obtained from photoinhibited thalli. The less acidic green band contained predominantly 22 kDa polypeptides that were resolved into numerous components by denaturing isoelectric focusing. Its pigment composition was more complex, containing, in addition, pigments of the so-called xanthophyll cycle. In photoinhibited thalli, about half of the violaxanthin was converted into antheraxanthin and zeaxanthin. All the pigments of the xanthophyll cycle were specifically associated with this subunit, and it may thus have a central role in the thermal dissipation of the absorbed light energy as postulated for light-harvesting complex II isolated from green plants.  相似文献   
96.
Some novel cobalt diphenylphosphine complexes were synthesized by reacting cobalt(II) chloride with (2-methoxyethyl)diphenylphosphine, (2-methoxyphenyl)diphenylphosphine, and 2-(1,1-dimethylpropyl)-6-(diphenylphosphino)pyridine. Single crystals suitable for X-ray diffraction studies were obtained for the first two complexes, and their crystal structure was determined. The novel compounds were then used in association with methylaluminoxane (MAO) for the polymerization of 1,3-butadiene, and their behavior was compared with that exhibited in the polymerization of the same monomer by the systems CoCl2(PnPrPh2)2/MAO and CoCl2(PPh3)2/MAO. Some significant differences were observed depending on the MAO/Co ratio used, and a plausible interpretation for such a different behavior is proposed.  相似文献   
97.
Cosmetics has recently focused on biobased skin-compatible materials. Materials from natural sources can be used to produce more sustainable skin contact products with enhanced bioactivity. Surface functionalization using natural-based nano/microparticles is thus a subject of study, aimed at better understanding the skin compatibility of many biopolymers also deriving from biowaste. This research investigated electrospray as a method for surface modification of cellulose tissues with chitin nanofibrils (CNs) using two different sources—namely, vegetable (i.e., from fungi), and animal (from crustaceans)—and different solvent systems to obtain a biobased and skin-compatible product. The surface of cellulose tissues was uniformly decorated with electrosprayed CNs. Biological analysis revealed that all treated samples were suitable for skin applications since human dermal keratinocytes (i.e., HaCaT cells) successfully adhered to the processed tissues and were viable after being in contact with released substances in culture media. These results indicate that the use of solvents did not affect the final cytocompatibility due to their effective evaporation during the electrospray process. Such treatments did not also affect the characteristics of cellulose; in addition, they showed promising anti-inflammatory and indirect antimicrobial activity toward dermal keratinocytes in vitro. Specifically, cellulosic substrates decorated with nanochitins from shrimp showed strong immunomodulatory activity by first upregulating then downregulating the pro-inflammatory cytokines, whereas nanochitins from mushrooms displayed an overall anti-inflammatory activity via a slight decrement of the pro-inflammatory cytokines and increment of the anti-inflammatory marker. Electrospray could represent a green method for surface modification of sustainable and biofunctional skincare products.  相似文献   
98.
Prunus mahaleb L. fruit has long been used in the production of traditional liqueurs. The fruit also displayed scavenging and reducing activity, in vitro. The present study focused on unravelling peripheral and central protective effects, antimicrobial but also anti-COVID-19 properties exerted by the water extract of P. mahaleb. Anti-inflammatory effects were studied in isolated mouse colons exposed to lipopolysaccharide. Neuroprotection, measured as a blunting effect on hydrogen-peroxide-induced dopamine turnover, was investigated in hypothalamic HypoE22 cells. Antimicrobial effects were tested against different Gram+ and Gram- bacterial strains. Whereas anti-COVID-19 activity was studied in lung adenocarcinoma H1299 cells, where the gene expression of ACE2 and TMPRSS2 was measured after extract treatment. The bacteriostatic effects induced on Gram+ and Gram- strains, together with the inhibition of COX-2, TNFα, HIF1α, and VEGFA in the colon, suggest the potential of P. mahaleb water extract in contrasting the clinical symptoms related to ulcerative colitis. The inhibition of the hydrogen peroxide-induced DOPAC/DA ratio indicates promising neuroprotective effects. Finally, the downregulation of the gene expression of ACE2 and TMPRSS2 in H1299 cells, suggests the potential to inhibit SARS-CoV-2 virus entry in the human host. Overall, the results support the valorization of the local cultivation of P. mahaleb.  相似文献   
99.
Dynamic nuclear polarization (DNP) is a powerful method to enhance the sensitivity of solid-state magnetic nuclear resonance (ssNMR) spectroscopy. However, its biomolecular applications at high magnetic fields (preferably>14 T) have so far been limited by the intrinsically low efficiency of polarizing agents and sample preparation aspects. Herein, we report a new class of trityl-nitroxide biradicals, dubbed SNAPols that combine high DNP efficiency with greatly enhanced hydrophilicity. SNAPol-1, the best compound in the series, shows DNP enhancement factors at 18.8 T of more than 100 in small molecules and globular proteins and also exhibits strong DNP enhancements in membrane proteins and cellular preparations. By integrating optimal sensitivity and high resolution, we expect widespread applications of this new polarizing agent in high-field DNP/ssNMR spectroscopy, especially for complex biomolecules.  相似文献   
100.
Flavohemoglobins have the particular capability of binding unsaturated and cyclopropanated fatty acids as free acids or phospholipids. Fatty acid binding to the ferric heme results in a weak but direct bonding interaction. Ferrous and ferric protein, in presence or absence of a bound lipid molecule, have been characterized by transient absorption spectroscopy. Measurements have been also carried out both on the ferrous deoxygenated and on the CO bound protein to investigate possible long-range interaction between the lipid acyl chain moiety and the ferrous heme. After excitation of the deoxygenated derivatives the relaxation process reveals a slow dynamics (350 ps) in lipid-bound protein but is not observed in the lipid-free protein. The latter feature and the presence of an extra contribution in the absorption spectrum, indicates that the interaction of iron heme with the acyl chain moiety occurs only in the excited electronic state and not in the ground electronic state. Data analysis highlights the formation of a charge-transfer complex in which the iron ion of the lipid-bound protein in the expanded electronic excited state, possibly represented by a high spin Fe III intermediate, is able to bind to the sixth coordination ligand placed at a distance of at 3.5 Å from the iron. A very small nanosecond geminate rebinding is observed for CO adduct in lipid-free but not in the lipid-bound protein. The presence of the lipid thus appears to inhibit the mobility of CO in the heme pocket.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号