首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   287篇
  免费   14篇
化学   221篇
力学   3篇
数学   13篇
物理学   64篇
  2023年   2篇
  2022年   4篇
  2021年   10篇
  2020年   7篇
  2019年   9篇
  2018年   12篇
  2017年   10篇
  2016年   15篇
  2015年   11篇
  2014年   5篇
  2013年   15篇
  2012年   23篇
  2011年   27篇
  2010年   21篇
  2009年   9篇
  2008年   16篇
  2007年   16篇
  2006年   11篇
  2005年   13篇
  2004年   8篇
  2003年   8篇
  2002年   12篇
  2001年   8篇
  2000年   4篇
  1999年   2篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   5篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1977年   1篇
  1975年   1篇
排序方式: 共有301条查询结果,搜索用时 15 毫秒
101.
102.
The dynamics of fluoride and ammonium ions in Na(NH4)6Zr4F23 (I) and Li(NH4)6Zr4F23 (II) was studied by 1H and 19F NMR in the temperature range 170-440 K. Types of ionic motion were determined, and their activation energies were evaluated. In I, phase transitions were found in the temperature ranges 360-370 and 410-415 K. The experimental values of conductivity of Na(NH4)6Zr4F23 and Li(NH4)6Zr4F23 ( 4 × 10-3 S/cm at T = 420 K) permit one to attribute these fluorides to the class of superionic conductors.  相似文献   
103.
The dynamics of the fluoride and proton sublattices and the electrophysical properties of NH4SbF4 (I) and NH4Sb2F7 (II) in the temperature range 210-435 K were studied by 19F and 1H NMR and impedance spectroscopy. Types of ionic motion were determined and their activation energies were estimated. The structural phase transitions in I and II form the high-temperature modifications -NH4SbF4 and -NH4Sb2F7, having high ionic (superionic) conductivity in the range 425-435 K (1.9-1.5×10-3 S/cm).  相似文献   
104.
The internal mobility of the fluoride ions and the electrophysical characteristics of CsSb2F7 were studied by 19F NMR and impedance spectroscopy in the temperature range 250-480 K. The types of ionic motion in the fluoride subsystem have been determined. A structural phase transition to the -CsSb2F7 modification characterized by high ionic (superionic) conductivity above 425 K (1.3× 10-3 S/cm) has been established.  相似文献   
105.
The crystal structure of NH4TiF5 (I) was determined (monoclinic crystals, a = 14.683(1), b = 6.392(1), c = 20.821(2) , = 110.538(2); space group P21/n, Z = 4). Structure I is built from infinite zigzag chains of TiF6 octahedra linked by their cis-vertices in the [101] direction; the chains are connected by the ammonium ions forming hydrogen bonds. The chains of octahedra with the surrounding ammonium ions are staggered in the crystal lattice of I. 19F and 1H NMR spectroscopy was used to study the dynamics of the complex ions in NH4TiF5 in the temperature range 270-530 K. Types of ionic motion in the fluoride and proton subsystems were determined, and activation energies evaluated.  相似文献   
106.
Single crystals of NH4NaTiF6are studied by X-ray diffraction analysis (automated diffractometer, MoK radiation, graphite monochromator, sin/ 1.0 Å–1, 1566 reflections with I> 3(I), anisotropic least squares method to R= 0.045 and R w= 0.040). The compound belongs to the NaRbSnF6structural type. The types of internal motions of the complex ions NH4 +and TiF6 2–are determined in the temperature range 200–500 K and compared with the motion of ionic groups in (NH4)2TiF6and Na2TiF6crystals.  相似文献   
107.
108.
109.
110.
It has become possible to distinguish DNA molecules of different nucleotide sequences by measuring ion current passing through a narrow pore containing DNA. To assist experimentalists in interpreting the results of such measurements and to improve the DNA sequence detection method, we have developed a computational approach that has both the atomic-scale accuracy and the computational efficiency required to predict DNA sequence-specific differences in the nanopore ion current. In our Brownian dynamics method, the interaction between the ions and DNA is described by three-dimensional potential of mean force maps determined to a 0.03 nm resolution from all-atom molecular dynamics simulations. While this atomic-resolution Brownian dynamics method produces results with orders of magnitude less computational effort than all-atom molecular dynamics requires, we show here that the ion distributions and ion currents predicted by the two methods agree. Finally, using our Brownian dynamics method, we find that a small change in the sequence of DNA within a pore can cause a large change in the ion current, and validate this result with all-atom molecular dynamics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号