首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   78037篇
  免费   324篇
  国内免费   377篇
化学   24161篇
晶体学   789篇
力学   6728篇
数学   32000篇
物理学   15060篇
  2018年   10436篇
  2017年   10261篇
  2016年   6057篇
  2015年   847篇
  2014年   298篇
  2013年   329篇
  2012年   3769篇
  2011年   10501篇
  2010年   5633篇
  2009年   6037篇
  2008年   6577篇
  2007年   8743篇
  2006年   220篇
  2005年   1305篇
  2004年   1520篇
  2003年   1962篇
  2002年   1001篇
  2001年   239篇
  2000年   286篇
  1999年   155篇
  1998年   192篇
  1997年   145篇
  1996年   200篇
  1995年   118篇
  1994年   75篇
  1993年   97篇
  1992年   56篇
  1991年   66篇
  1990年   50篇
  1989年   61篇
  1988年   62篇
  1987年   61篇
  1986年   58篇
  1985年   56篇
  1984年   47篇
  1983年   39篇
  1982年   51篇
  1981年   40篇
  1980年   50篇
  1979年   46篇
  1978年   39篇
  1973年   27篇
  1914年   45篇
  1913年   40篇
  1912年   40篇
  1910年   24篇
  1909年   41篇
  1908年   40篇
  1907年   32篇
  1904年   28篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
We have experimentally demonstrated a tunable multi-wavelength Brillouin–erbium fiber laser with over 40 GHz spacing utilizing two cascaded double Brillouin-frequency-spacing cavities. In this laser configuration, two segments of 25 km-long single-mode fibers are used as Brillouin gain medium in each ring cavity, and a segment of 8 m-long erbium-doped fiber with 980 nm pump is employed to amplify Brillouin pump (BP). At BP wavelength of 1550 nm, BP power of 8.3 dBm (6.8 mW) and the maximum 980 nm pump power of 27.78 dBm (600 mW), seven output channels with fourfold Brillouin-frequency spacing, and the tuning range of 15 nm from 1545 to 1560 nm are achieved. The proposed multi-wavelength Brillouin–erbium fiber laser has wide applications, such as in microwave signal generation and optical communications.  相似文献   
992.
Tellurite glasses (TeO2–ZnO–Nb2O5) mono-doped Er3+ and co-doped Er3+/Ce3+ have been prepared using the melt-quenching technique. To evaluate the effect of Ce3+ on the structural, thermal stability of glass hosts and fluorescence properties of Er3+, X-ray diffraction patterns, Ftir spectra, differential scanning calorimeter curves, absorption spectra, fluorescence emission spectra, fluorescence lifetimes, up-conversion emission spectra of glass samples were measured and investigated. Using Judd–Ofelt theory, we calculated intensity parameters (Ω2, Ω4 and Ω6), spontaneous emission probabilities, the radiative lifetime, luminescence branching factors and the quantum yield of luminescence for 4I13/2 → 4I15/2 transition. The co-doping with Ce3+ was effective on the suppression of up-conversion emission of Er3+ owing to the phonon-assisted energy transfer: Er3+:4I11/2 + Ce3+:2F5/2 → Er3+:4I13/2 + Ce3+:2F7/2 which contributed the effective enhancement of 1.53 µm fluorescence emission. The change in optical properties with the addition of Ce3+ ions have been discussed and compared with other glasses. Using the Mc Cumber method for the 4I13/2 → 4I15/2 transition, absorption cross-section, calculated emission cross-section, and gain cross-section values support that TZNEr1Ce1 glass is a potential material for developing broad-band and high-gain erbium-doped fiber amplifiers applied for 1.53 µm.  相似文献   
993.
994.
This paper presents the optimal conditions for the ultraviolet laser percussion drilling of alumina materials intended for use in heat sinks. The Taguchi method and grey relational analysis, along with the consideration of multiple quality characteristics, were applied for determining the optimal parameters. The entrance diameter and taper angle of the drilled hole were affected by the material processing parameters, including laser power, pulse duration, focal plane position, and number of pulses. The Taguchi method and grey relational analysis were used for assessing the effects of the operational parameters on multiple performance characteristics. Nine experiments based on an orthogonal array were performed. According to the results, the optimal process parameters were as follows: laser energy density, 3.82 J/cm2; focal plane position, 0.1 mm; number of pulses, 20 shots; and single pulse duration, 3 ms. Analysis of the grey relational grade revealed that the focal plane position was the most dominant parameter.  相似文献   
995.
We perform the updated constraints on the Hubble constant H 0 by using the model-independent method, Gaussian processes. Utilizing the latest 30 cosmic chronometer measurements, we obtain H 0 = 67.38 ± 4.72 km s?1 Mpc?1, which is consistent with the Planck 2015 and Riess et al. analysis at 1σ confidence level. Different from the results of Busti et al. by only using 19 H(z) measurements, our reconstruction results of H(z) and the derived values of H 0 are insensitive to the concrete choice of covariance functions of Matérn family.  相似文献   
996.
The perovskite-type Ba- and Ti/Nb-doped (Ba0.15Sr0.85)(B0.15Co0.85)O3 ? δ (B = Ti, Nb) oxides were synthesized successfully by the solid-state reaction method. Crystal structure, elemental compositions, and oxygen nonstoichiometry of the as-synthesized (Ba0.15Sr0.85)(B0.15Co0.85)O3 ? δ (B = Ti, Nb) oxides were investigated by X-ray diffraction (XRD), scanning electron microscopy-energy dispersive spectrometry (SEM-EDS), inductively coupled plasma (ICP)-atomic emission spectrometry, thermogravimetry (TG), and iodometric titration. XRD results demonstrate that the as-obtained (Ba0.15Sr0.85)(B0.15Co0.85)O3 ? δ (B = Ti, Nb) oxides possess purely cubic perovskite-type structures. The temperature-swing oxygen sorption/desorption properties of the as-synthesized (Ba0.15Sr0.85)(B0.15Co0.85)O3 ? δ (B = Ti, Nb) perovskite-type oxides were studied by the dynamic TG. Results show that the structural stability of the co-doped (Ba0.15Sr0.85)(B0.15Co0.85)O3 ? δ (B = Ti, Nb) oxides is improved greatly, and the high oxygen sorption capacity for the perovskite-type (Ba0.15Sr0.85)(B0.15Co0.85)O3 ? δ (B = Ti, Nb) oxides is also obtained between 300 and 950 °C in air.  相似文献   
997.
The Na x Li1-x CdVO4 (x = 0.5, 1) orthovanadates were prepared using a solid-state reaction method. The x-ray diffraction patterns (XRDP) of both materials reveal the formation of the Na2CrO4 structure. Vibrational study confirms the existence of [VO4]3? group. Electrical measurements of our compounds have been investigated using complex impedance spectroscopy (CIS) in the frequency and temperature range 209 Hz–1 MHz and 589–703 K, respectively. Nyquist plots reveal the presence of tow contributions, an equivalent circuit was proposed. DC conductivity shows electrical conduction in the material as a thermally activated process. The AC conductivity is explained using the non-overlapping small polaron tunneling (NSPT) conduction mechanism. A relationship between crystal structure and ionic conductivity was established and discussed.  相似文献   
998.
The silicon/graphite (Si/G) composite was prepared using pyrolytic polyacrylonitrile (PAN) as carbon precursor, which is a nitrogen-doped carbon that provides efficient pathway for electron transfer. The combination of flake graphite and pyrolytic carbon layer accommodates the large volume expansion of Si during discharge-charge process. The Si/G composite was synthesized via cost-effective liquid solidification followed by carbonization process. The effect of PAN content on electrochemical performance of composites was investigated. The composite containing 40 wt% PAN exhibits a relatively better rate capability and cycle performance than others. It exhibits initial reversible specific capacity of 793.6 mAh g?1 at a current density of 100 mA g?1. High capacity of 661 mAh g?1 can be reached after 50 cycles at current density of 500 mA g?1.  相似文献   
999.
Hierarchical Na2FeP2O7 spheres with nanoparticles were successfully fabricated by a facile spray drying method. A relatively low drying temperature was introduced in order to form a carbon layer on the surface. As a cathode material for sodium-ion batteries, it delivered a reversible capacity of 84.4 mAh g?1 at 0.1 C and showed excellent cycling and rate performance (64.7 mAh g?1 at 5 C). Furthermore, a full sodium battery was fabricated using SP-Na2FeP2O7 as the cathode and hard carbon as the anode, suffering almost no capacity loss after 400 cycles at 1 C. Due to its superior electrochemical property and the low materials cost, Na2FeP2O7 is becoming a promising cathode material for large-scale energy storage systems.  相似文献   
1000.
Layered lithium-rich oxide, 0.5Li2MnO3·0.5LiMn1/3Ni1/3Co1/3O2, is synthesized in a mixed molten salt of KCl and LiCl under 750 °C. Its morphology and structure are characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen adsorption and desorption isotherm, and its performances as cathode of lithium-ion battery are investigated by charge–discharge test and electrochemical impedance spectroscopy, with a comparison of the samples synthesized via solid-state reaction. It is found that the resulting product consists of uniform nanoparticles, 50 nm in average, which possesses a well crystallite layered structure although its synthesis temperature is low and thus exhibits excellent cyclic stability and rate capability. The resulting product delivers an initial discharge capacity of 268 mAh g?1 at 0.1 C and has a capacity retention of 82% after 100 cycles at 1 C, compared to the 243 mAh g?1 and 73% for the sample synthesized by solid-state reaction under 900 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号