首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   364篇
  免费   14篇
  国内免费   2篇
化学   199篇
晶体学   3篇
力学   10篇
数学   125篇
物理学   43篇
  2023年   3篇
  2022年   15篇
  2021年   9篇
  2020年   9篇
  2019年   12篇
  2018年   11篇
  2017年   9篇
  2016年   22篇
  2015年   7篇
  2014年   23篇
  2013年   25篇
  2012年   35篇
  2011年   27篇
  2010年   21篇
  2009年   20篇
  2008年   15篇
  2007年   17篇
  2006年   13篇
  2005年   22篇
  2004年   9篇
  2003年   4篇
  2002年   4篇
  2001年   1篇
  2000年   7篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1974年   1篇
排序方式: 共有380条查询结果,搜索用时 15 毫秒
11.
12.
The electrodegradation of azithromycin was studied by its indirect oxidation using dimensionally stable Ti/RuO2 anode as catalyst in the electrolyte containing methanol, 0.05 M NaHCO3, sodium chloride and deionized water. The optimal conditions for galvanostatic electrodegradation for the azithromycin concentration of 0.472 mg cm?3 were found to be NaCl concentration of 7 mg cm?3 and the applied current of 300 mA. The differential pulse voltammetry using glassy carbon electrode was performed for the first time in the above-mentioned content of electrolyte for the nine concentration of azithromycin (0.075–0.675 mg cm?3) giving the limits of azithromycin detection and of quantification as: LOD 0.044 mg cm?3 and LOQ 0.145 mg cm?3. The calibration curve was constructed enabling the electrolyte analysis during its electrodegradation process. The electrolyte was analyzed by high-performance liquid chromatography and electrospray ionization time-of-flight mass spectrometry. The electrooxidation products were identified and after 180 min there was no azithromycin in the electrolyte while TOC analysis showed that 79% of azithromycin was mineralized. The proposed degradation scheme is presented.  相似文献   
13.
The X‐ray powder diffraction pattern that corresponds to the disordered state of kalsilite (potassium aluminium orthosilicate), KAlSiO4, is investigated. The directionality of (Al,Si)O4 tetrahedra within single six‐membered tetrahedral ring building units (S6R) could not be defined. With equal probability for the directionality of each tetrahedra within one S6R [free apex pointing up (U) or down (D)], an undefined sequence of U and D directionalities is needed to describe the S6R building units. The extinction conditions of disordered kalsilite are also different compared to ordered kalsilite within the space group P63. In disordered kalsilite, h0l and hhl reflections with l = 2n + 1 are systematically absent.  相似文献   
14.
15.
In this work we theoretically investigate a possibility to use cubic nitride based multi-layer periodic nanostructure as a semiconductor metamaterial. The structure design is based on an active region of a quantum cascade laser optimized to achieve optical gain in the Terahertz (THz) spectral range. In particular, we test the GaN/AlGaN quantum well configurations, which should exhibit important advantages compared to GaAs-based structures, namely room temperature operation without the assistance of magnetic field and lower doping densities. Our numerical rate-equations model is solved self-consistently and it takes into account electron-longitudinal optical phonon scattering between all the relevant states among the adjacent periods of the structure. A global optimization routine, specifically genetic algorithm is then used to generate new gain-optimized structures. This work confirms the advantages of cubic GaN designs over GaAs ones, namely feasibility of negative refraction at room temperature without the assistance of magnetic field while keeping the doping densities of the same order of magnitude.  相似文献   
16.
17.
New forms of hybrid multiaxial nanocomposites with enhanced mechanical and stab resisting properties are presented. This study is motivated by the lack of knowledge in the study of the multiaxial fabric nanocomposites with two modified thermoplastic matrices for antiballistic protection. Introduction of 5 wt.% silica nanoparticles in the composite of polyurethane/p‐aramid/poly (vinyl butyral) leads to significant improvement in mechanical properties, and the addition of silane as a coupling agents and glutaraldehyde as a crosslinking agents yielded maximal values of storage modulus, tensile modulus and anti‐stabbing properties for hybrid nanocomposites. Ballistic resistance testing and penetration depth of the hybrid nanocomposites were visualized using image analysis. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
18.
The subject of this study is production of carbon nanotubes (CNTs) using an original procedure of reduction of lithium molten salts onto graphite cathode; their structural characterization and application as support material for electrocatalysts aimed for hydrogen evolution. As-produced CNTs were characterized by means of scanning and transmission electron microscopy (SEM and TEM), Raman spectroscopy, and thermogravimetric and differential thermal analysis (DTA). SEM and TEM images have shown that nanotubes are mostly of curved shape with length of 1–20 μm and diameter of 20–40 nm. Raman peaks indicate that the crystallinity of produced nanotubes is rather low. The obtained results suggest that formed product contains up to 80 % multiwalled carbon nanotubes (MWCNTs), while the rest being non-reacted graphite and fullerenes. DTA curves show that combustion process of the nanotubes takes place in two stages, i.e., at 450 and 720 °C. At the lower temperature, combustion of MWCNTs occurs, while at higher one, fullerenes and non-reacted graphite particles burn. As-produced MWCNTs were used as electrocatalyst’s support materials and their performance was compared with that of traditional carbon support material Vulcan XC-72. MWNTs have shown almost twice higher real surface area, and electrocatalyst deposited on them showed better catalytic activity than corresponding one deposited on Vulcan XC-72.  相似文献   
19.
20.
This paper describes the preparation of a new sensor based on Zn‐ferrite modified glassy carbon paste electrode and its electrochemical application for the determination of trace Cd(II) ions in waste waters using differential pulse anodic stripping voltammetry (DPASV). Different Zn/Ni ferrite nanoparticles were synthesized and characterized using scanning electron microscopy (SEM) and X‐ray powder diffraction (XRPD). The prepared ferrite nanoparticles were used for the preparation of Zn‐ferrite‐modified glassy carbon paste electrode (ZnMGCPE) for determination of Cd(II) at nanomolar levels in waste water at pH 5. The different parameters such as conditions of preparation, Zn2+/Ni2+/Fe2+ ratio and electrochemical parameters, percentage of modifier, accumulation time, pH and accumulation potential were investigated. Besides, interference measurements were also evaluated under optimized parameters. The best voltammetric response was observed for ZnFe2O4 modifier, when the percentage of modifier was 3 %, accumulation time 9 min, pH of supporting electrolyte 5 and accumulation potential ?1.05 V. Thus prepared electrode displays excellent response to Cd(II) with a detection limit of 0.38 ppb, and selective detection toward Cd(II) was achieved.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号