首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   0篇
化学   88篇
数学   2篇
物理学   1篇
  2020年   2篇
  2019年   2篇
  2016年   1篇
  2012年   16篇
  2011年   8篇
  2010年   5篇
  2009年   1篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   7篇
  2002年   11篇
  2001年   3篇
  2000年   2篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1984年   1篇
  1982年   1篇
排序方式: 共有91条查询结果,搜索用时 31 毫秒
21.
Reactions of LnBr(3) or LnOI with molten boric acid result in formation of Ln[B(5)O(8)(OH)(H(2)O)(2)Br] (Ln = La-Pr), Nd(4)[B(18)O(25)(OH)(13)Br(3)], or Ln[B(5)O(8)(OH)(H(2)O)(2)I] (Ln = La-Nd). Reaction of PuOI with molten boric acid yields Pu[B(7)O(11)(OH)(H(2)O)(2)I]. The Ln(III) and Pu(III) centers in these compounds are found as nine-coordinate hula-hoop or 10-coordinate capped triangular cupola geometries where there are six approximately coplanar oxygen donors provided by triangular holes in the polyborate sheets. The borate sheets are connected into three-dimensional networks by additional BO(3) triangles and/or BO(4) tetrahedra that are roughly perpendicular to the layers. The room-temperature absorption spectrum of single crystals of Pu[B(7)O(11)(OH)(H(2)O)(2)I] shows characteristic f-f transitions for Pu(III) that are essentially indistinguishable from Pu(III) in other compounds with alternative ligands and different coordination environments.  相似文献   
22.
23.
The development of a scheme to treat two-dimensional electromagneticscattering by electrically large, perfectly conducting bodiesis described. It incorporates the effects of surface curvatureand non-local phenomena and has the potential to provide thebasis for a general technique yielding more accurate predictionsthan the widely used physical optics method.  相似文献   
24.
25.
The reaction of UO2(NO3)2.6H2O with Co or Cu metal, phosphoric acid, and CsCl under mild hydrothermal conditions results in the formation of Cs2{(UO2)4[Co(H2O)2(HPO4)(PO4)4} (1) or Cs(3+x)[(UO2)3CuH(4-x)(PO4)5].H2O (2). The structure of 1 contains uranium atoms in pentagonal bipyramidal and hexagonal bipyramidal environments. The interaction of the uranyl cations and phosphate anions creates layers in the [ab] plane. The uranyl phosphate layers are joined together by octahedral Co centers wherein the Co is bound by phosphate and two cis water molecules. In addition, the Co ions are also ligated by a uranyl oxo atom. The presence of these octahedral building units stitches the structure together into a three-dimensional framework where void spaces are filled by Cs+ cations. The structure of 2 contains uranium centers in UO6 tetragonal bipyramidal and UO7 pentagonal bipyramidal geometries. The uranyl moieties are bridged by phosphate anions into sinusoidal sheets that extend into the [bc] plane and are linked into a three-dimensional structure by Cu(II). The Cu centers reside in square planar environments. Charge balance is maintained by Cs+ cations. Both the overall structures and the uranyl phosphate layers in 1 and 2 are novel.  相似文献   
26.
Na2[UO2(IO3)4(H2O)] has been synthesized under mild hydrothermal conditions. Its structure consists of Na+ cations and [UO2(IO3)4(H2O)](2-) anions. The [UO2(IO3)4(H2O)](2-) anions are formed from the coordination of a nearly linear uranyl, UO2(2+), cation by four monodentate IO(3-) anions and a coordinating water molecule to yield a pentagonal bipyramidal environment around the uranium center. The water molecules form intermolecular hydrogen bonds with the terminal oxo atoms of neighboring [UO2(IO3)4(H2O)](2-) anions to yield one-dimensional chains that extend down the b axis. There are two crystallographically unique iodate anions in the structure of Na2[UO2(IO3)4(H2O)]. One of these anions is aligned so that the lone-pair of electrons is also directed along the b axis. The overall structure is therefore polar, owing to the cooperative alignment of both the hydrogen bonds and the lone-pair of electrons on iodate. The polarity of the monoclinic space group C2 (a = 11.3810(12) A, b = 8.0547(8) A, c = 7.6515(8) A, beta = 90.102(2) degrees , Z = 2, T = 193 K) found for this compound is consistent with the structure. Second-harmonic generation of 532 nm light from a 1064 nm laser source yields a response of approximately 16x alpha-SiO2.  相似文献   
27.
A polar Cu(II) uranyl diphosphonate, Cu(H2O)4(UO2)3(H2O)2[CH2(PO3)2]2·5H2O, has been prepared under mild hydrothermal conditions. This compound has direct linkages between the oxo atoms of the uranyl moieties and the Cu(II) centers. Despite the presence of Cu(II) in the structure, vibronically-coupled emission is still observed, most likely because there are two crystallographically unique uranyl moieties, only one of which bonds to Cu(II).  相似文献   
28.
Single crystals of PuO2(IO3)2 x H2O were synthesized under hydrothermal conditions (180 degrees C) representing the first structurally characterized transuranium iodate.  相似文献   
29.
δ-Ln2−xLuxS3 (Ln=Ce, Pr, Nd; x=0.67-0.71) compounds have been synthesized through the reaction of elemental rare-earth metals and S using a Sb2S3 flux at 1000 °C. These compounds are isotypic with CeTmS3, which has a complex three-dimensional structure. It includes four larger Ln3+ sites in eight- and nine-coordinate environments, two disordered seven-coordinate Ln3+/Lu3+ positions, and two six-coordinate Lu3+ ions. The structure is constructed from one-dimensional chains of LnSn (n=6-9) polyhedra that extend along the b-axis. These polyhedra share faces or edges with two neighbors within the chains, while in the [ac] plane they share edges and corners with other chains. Least square refinements gave rise to the formulas of δ-Ce1.30Lu0.70S3, δ-Pr1.29Lu0.71S3 and δ-Nd1.33Lu0.67S3, which are consistent with the EDX analysis and magnetic susceptibility data. δ-Ln2−xLuxS3 (Ln=Ce, Pr, Nd; x=0.67-0.71) show no evidence of magnetic ordering down to 5 K. Optical properties measurements show that the band gaps for δ-Ce1.30Lu0.70S3, δ-Pr1.29Lu0.71S3, and δ-Nd1.33Lu0.67S3 are 1.25, 1.38, and 1.50 eV, respectively. Crystallographic data: δ-Ce1.30Lu0.70S3, monoclinic, space group P21/m, a=11.0186(7), b=3.9796(3), c=21.6562(15) Å, β=101.6860(10), V=929.93(11), Z=8; δ-Pr1.29Lu0.71S3, monoclinic, space group P21/m, a=10.9623(10), b=3.9497(4), c=21.5165(19) Å, β=101.579(2), V=912.66(15), Z=8; δ-Nd1.33Lu0.67S3, monoclinic, space group P21/m, a=10.9553(7), b=3.9419(3), c=21.4920(15) Å, β=101.5080(10), V=909.47(11), Z=8.  相似文献   
30.
The reaction of NpO(2) with SeO(2) in the presence of CsCl at 180 degrees C results in the formation of Np(NpO(2))(2)(SeO(3))(3) (1). The structure of 1 consists of three crystallographically unique Np centers with three different coordination environments in two different oxidation states. Np(1) is found in a neptunyl(V), O[double bond]Np[double bond]O(+), unit that is further ligated in the equatorial plane by three chelating SeO(3)(2-) anions to create a hexagonal bipyramidal NpO(8) unit. A second neptunyl(V) cation also occurs for Np(2); it is bound by four bridging selenite anions and by the oxo atom from the Np(1) neptunyl cation to form a pentagonal bipyramidal, NpO(7), unit. The third neptunium center, Np(3), which contains Np(IV), is found in a distorted NpO(8) dodecahedron. Np(3) is bound by five bridging selenite anions and by three neptunyl units via cation-cation interactions. The NpO(7) pentagonal bipyramids and NpO(8) hexagonal bipyramids share both corners and edges. Both of these polyhedra share corners via cation-cation interactions with the NpO(8) dodecahedra creating a three-dimensional structure with small channels that house the stereochemically active lone pair of electrons on the selenite anions. Magnetic susceptibility data follow Curie-Weiss behavior over the entire temperature range measured (5 < or = T < or = 320 K). The effective moment, mu(eff) = 2.28 mu(B), which represents an average over the three crystallographically inequivalent Np atoms, is within the expected range of values. There is no evidence of long-range ordering of the Np moments at temperatures down to 5 K, consistent with the negligible Weiss constant determined from fitting the susceptibility data. Crystallographic data: 1, orthorhombic, space group Pbca, a = 10.6216(5), b = 11.9695(6), and c = 17.8084(8) A and Z = 8 (T = 193 K).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号