首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4297篇
  免费   131篇
  国内免费   37篇
化学   2741篇
晶体学   9篇
力学   170篇
数学   928篇
物理学   617篇
  2023年   25篇
  2022年   95篇
  2021年   95篇
  2020年   102篇
  2019年   90篇
  2018年   89篇
  2017年   66篇
  2016年   179篇
  2015年   148篇
  2014年   180篇
  2013年   275篇
  2012年   314篇
  2011年   323篇
  2010年   157篇
  2009年   197篇
  2008年   270篇
  2007年   259篇
  2006年   217篇
  2005年   201篇
  2004年   205篇
  2003年   144篇
  2002年   102篇
  2001年   47篇
  2000年   38篇
  1999年   35篇
  1998年   39篇
  1997年   37篇
  1996年   49篇
  1995年   22篇
  1994年   28篇
  1993年   16篇
  1992年   31篇
  1991年   21篇
  1990年   23篇
  1989年   21篇
  1988年   21篇
  1987年   18篇
  1986年   15篇
  1985年   34篇
  1984年   28篇
  1983年   27篇
  1982年   30篇
  1981年   15篇
  1980年   20篇
  1979年   11篇
  1978年   19篇
  1977年   13篇
  1976年   14篇
  1974年   11篇
  1967年   4篇
排序方式: 共有4465条查询结果,搜索用时 0 毫秒
61.
The effect of strain in the axial coordination of imidazole to the heme has been studied in the chelate complexes deuterohemin-histidine (DH-His) and deuterohemin-alanylhistidine (DH-AlaHis). Molecular mechanics calculations indicate that three types of distortion of the axial ligand occur in DH-His, due to the relatively short length of the arm carrying the donor group: tilting off-axis, tipping, and inclination of the imidazole plane with respect to the axial Fe-N bond. The effects of tilting (Deltagamma approximately 10 degrees ) and inclination of the imidazole ring (Deltadelta approximately 17 degrees ) are dominant, while tipping is small and is probably of little importance here. By contrast, the axial imidazole coordination is normal in DH-AlaHis and other computed deuterohemin-dipeptide or -tripeptide complexes where histidine is the terminal residue, the only exception being DH-ProHis, where the rigidity of the proline ring reduces the flexibility of the chelating arm. The distortion in the axial iron-imidazole bond in DH-His has profound and negative influence on the binding and catalytic properties of this complex compared to DH-AlaHis. The former complex binds more weakly carbon monoxide, in its reduced form, and imidazole, in its oxidized form, than the latter. The catalytic efficiency in peroxidative oxidations is also reduced in DH-His with respect to DH-AlaHis. The activity of the latter complex is similar to that of microperoxidase-11, the peptide fragment incorporating the heme that results from hydrolytic cleavage of cytochrome c.  相似文献   
62.
Electron spin resonance (ESR) and quasielastic laser scattering (QELS) measurements have been carried out on sodium taurodeoxycholate (NaTDC) micellar aqueous solutions. Computer simulation of the ESR line shape has been used to quantitatively analyze the rotational dynamics of the cholestan-spin label (CSL) dissolved by the NaTDC micellar aggregates as a function of temperature and NaCl concentration. The local reorientation of CSL has been accounted for motionally-averaged g- and A-tensors assuming fast oscillation around the spin-probe long molecular axis. The overall Brownian tumbling of CSL-micelle complexes has been modeled by an axially symmetric rotational tensor. Good agreement with experimental spectra is obtained. Best-fit rotational parameters and QELS data suggest that, in the circumstance of large aggregation, NaTDC micelles have cylindrical shape and micellar growth occurs along the cylinder axis.  相似文献   
63.
Reaction of the thiosemicarbazone ligands C4H4NC(H)=NN(H)C(S)NHR (R = Me, a ; Et, b ) with Li2[PdCl4] gave the dinuclear complexes [Pd{C4H4NC(H)=NNC(S)NHR}(μ‐Cl)]2 (R = Me, 1a ; Et, 1b ) with a central Pd2Cl2 core and with deprotonation of the thiosemicarbazones at the hydrazinic nitrogen atom. Treatment of 1a and 1b with triphenylphosphine gave the mononuclear compounds [Pd{C4H4C(H)=NNC(S)NHR}(Cl)(PPh3)] (R = Me, 2a ; Et, 2b ), whereas reaction of 1a and 1b with tertiary diphosphines gave mono‐ and dinuclear compounds, as appropriate, with the corresponding diphosphine acting as a monodentate ( 6b ), chelating ( 3a ) and bridging ligand ( 4a, 5a , 4b, 5b ). Treatment of 1a and 1b with (Ph2PCH2CH2PPh2)W(CO)5 gave the new heterobimetallic complexes 7a and 7b . The crystal structures of complexes 3a and 4a are described.  相似文献   
64.
Novel rhenium(I) tricarbonyl complexes have been prepared by reactions of (Et4N)2[Re(CO)3Br3] with acetylpyridine benzoylhydrazone, Hapbhyd, di(2‐pyridyl)ketone benzoylhydrazone, Hpy2bhyd, bis(2‐pyridine)ketone, py2CO, and pyridinealdehyde terephtalaldehydebishydrazone, pytehyd. The ligands remain protonated when no supporting base is added and the following complexes have been isolated: [Re(CO)3Br(Hapbhyd)], [Re(CO)3Br(Hpy2bhyd‐py, hyd)], [Re(CO)3Br(Hpy2bhyd‐py1, py2)], [Re(CO)3Br(py2CO‐N, N)] and [Re(CO)3Br(pytehyd)]. Addition of triethyl amine results in deprotonation of Hapbhyd and the formation of [Re(CO)3(OH2)(apbhyd)], whereas Hpy2bhyd is hydrolysed and a rhenium complex with the monoanionic bis(2‐pyridyl)hydroxymethanolato ligand, {py2C(OH)O}, is formed. The same compound, [Re(CO)3{py2C(OH)O}], is obtained when triethyl amine and water are added to a mixture of (Et4N)2[Re(CO)3Br3] and py2CO. The air‐stable products have been studied by spectroscopic methods and X‐ray crystallography.  相似文献   
65.
Catechols are ubiquitous substances often acting as antioxidants, thus of importance in a variety of biological processes. The Fenton and Haber–Weiss processes are thought to transform these molecules into aggressive reactive oxygen species (ROS), a source of oxidative stress and possibly inducing degenerative diseases. Here, using model conditions (ultrahigh vacuum and single crystals), we unveil another process capable of converting catechols into ROSs, namely an intramolecular redox reaction catalysed by a Cu surface. We focus on a tri-catechol, the hexahydroxytriphenylene molecule, and show that this antioxidant is thereby transformed into a semiquinone, as an intermediate product, and then into an even stronger oxidant, a quinone, as final product. We argue that the transformations occur via two intramolecular redox reactions: since the Cu surface cannot oxidise the molecules, the starting catechol and the semiquinone forms each are, at the same time, self-oxidised and self-reduced. Thanks to these reactions, the quinone and semiquinone are able to interact with the substrate by readily accepting electrons donated by the substrate. Our combined experimental surface science and ab initio analysis highlights the key role played by metal nanoparticles in the development of degenerative diseases.

An antioxidant catechol transforms following intramolecular redox reactions into highly reactive oxygen species, a semiquinone and a quinone, on copper.  相似文献   
66.
Reaction of the ligand C6H5N(H)NCMe(C5H4N) (a) with palladium(II) acetate in toluene gave the mononuclear cyclometallated complex [Pd{C6H4N(H)NCMe(C5H4N)}(AcO)] (1a). Reaction of 1a with sodium chloride gave the analogous chlorine compound [Pd{C6H4N(H)NCMe(C5H4N)}(Cl)] (3a) which could also be prepared by reaction of a with lithium tetrachloropalladate and sodium acetate in methanol for 48 h; whereas shorter reaction times afforded the non-cyclometallated complex [Pd{C6H5N(H)NCMe(C5H4N)}(Cl)2] (2a). Reaction of the ligand 2-ClC6H4N(H)NCMe(C5H4N) · HCl (b), with palladium(II) acetate, or with lithium tetrachloropalladate and sodium acetate, yielded the cyclometallated complex [Pd2-ClC6H3N(H)NCMe(C5H4N)(Cl)] (1b). Treatment of 3a and 1b with silver trifluoromethanesulphonate (triflate) and triphenylphosphine in acetone gave the mononuclear complexes [Pd{2-RC6HnN(H)NCMe(C5H4N)}(PPh3)][CF3SO3], (R = H, n = 4, 4a; R = Cl, n = 3, 2b) with the ligand as C,N,N′ terdentate and substitution of chlorine by triphenylphosphine. Reaction of 3a and 1b with silver triflate and the tertiary diphosphine Ph2P(CH2)4PPh2 (dppb) in a 2:1 molar ratio gave the dinuclear cyclometallated complexes [{Pd[2-RC6H3N(H)NCMe(C5H4N)]}2(μ-Ph2P(CH2)4PPh2)][CF3SO3]2 (R = H, 5a; R = Cl, 3b) with a μ2-diphosphine bridging ligand. Similarly, treatment of 3a and 1b with silver triflate and the tertiary triphosphines MeC(CH2PPh2)3 (tripod) and (Ph2PCH2CH2)2PPh (triphos), in 3:1 molar ratio, gave the novel trinuclear complexes [{Pd[C6H4N(H)NCMe(C5H4N)]}33-MeC(CH2Ph2)3}][CF3SO3]3 (6a) and [{Pd[2-ClC6H3N(H)NCMe(C5H4N)]}33-(PPh2CH2CH2)2PPh}][CF3SO3] 3 (4b) regioselectively, with the phosphine as a μ3-bridging ligand. When the reaction between 3a and triphos was carried out in 1:1 molar ratio the mononuclear complex [Pd{C6H4N(H)NCMe(C5H4N)}{(PPh2CH2CH2)2PPh-P,P,P}][ClO4] (7a) was obtained. The crystal structures of 2b, 3a and 4a have been determined by X-ray crystallography.  相似文献   
67.
68.
A ferrocene-based heteroditopic receptor containing urea and crown ether units shows electrochemical responses to dihydrogenphosphate and fluoride anions. K+ cations can only be detected in the presence of dihydrogenphosphate.  相似文献   
69.
A tetra- and a hepta-homopeptide from the C(alpha)-tetrasubstituted Aib (alpha-aminoisobutyric acid) residue were covalently linked to the POEPOP resin by the fragment-condensation approach. The conformational preferences of the two model peptides were determined for the first time on a solid support by means of high-resolution magic angle spinning NMR spectroscopy. The results obtained indicate that the Aib homopeptides adopt a regular 3(10)-helical structure even when they are covalently bound to a polymeric matrix, and thus confirm the remarkable conformational stability of the peptides rich in this amino acid. An ATR-FTIR spectroscopic investigation, performed in parallel, also confirmed that these polymer-bound peptides do indeed adopt a helical conformation. The results of this study open the possibility to exploit the peptide-resin conjugates based on C(alpha)-tetrasubstituted alpha-amino acids as helpful, structurally organized templates in molecular recognition studies or as catalysts in asymmetric synthesis.  相似文献   
70.
The metallocene thioether derivatives [Cp2M(MeSCH2CH2SMe)][PF6]2 (1, M = MO; 2, M = W), [Cp2Mo(SCH2CH2SMe)][PF6] (3) and [Cp2M(SCH2CH2S)] (4, M = Mo; 5, M = W) exhibit temperature-dependent fluxional behavior in solution, owing to the pyramidal sulfur inversion process. The activation energies for this process were determined from proton band-shape analysis in the cases of 1 (54.9 ± 2 kJ mol−1), 2 (51.2 ± 4.6 kJ mol−1) and 3 (30.0 ± 3.1 kJ mol−1). Extended Hückel calculations on related model complexes suggest that local inversion at the sulfur atoms, rather that an inversion of the complete S---C---C---S chain, is responsible for the observed fluxional behaviour.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号