首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4328篇
  免费   131篇
  国内免费   37篇
化学   2747篇
晶体学   10篇
力学   170篇
数学   928篇
物理学   641篇
  2023年   25篇
  2022年   95篇
  2021年   95篇
  2020年   103篇
  2019年   90篇
  2018年   90篇
  2017年   66篇
  2016年   179篇
  2015年   148篇
  2014年   180篇
  2013年   279篇
  2012年   315篇
  2011年   324篇
  2010年   157篇
  2009年   197篇
  2008年   271篇
  2007年   260篇
  2006年   217篇
  2005年   202篇
  2004年   206篇
  2003年   145篇
  2002年   102篇
  2001年   48篇
  2000年   40篇
  1999年   37篇
  1998年   39篇
  1997年   37篇
  1996年   49篇
  1995年   22篇
  1994年   28篇
  1993年   16篇
  1992年   31篇
  1991年   22篇
  1990年   24篇
  1989年   23篇
  1988年   22篇
  1987年   19篇
  1986年   16篇
  1985年   35篇
  1984年   30篇
  1983年   28篇
  1982年   30篇
  1981年   16篇
  1980年   20篇
  1979年   12篇
  1978年   19篇
  1977年   13篇
  1976年   14篇
  1974年   11篇
  1967年   4篇
排序方式: 共有4496条查询结果,搜索用时 0 毫秒
81.
We define a de Rham cohomology theory for analytic varieties over a valued field K? of equal characteristic p with coefficients in a chosen untilt of the perfection of K? by means of the motivic version of Scholze's tilting equivalence. We show that this definition generalizes the usual rigid cohomology in case the variety has good reduction. We also prove a conjecture of Ayoub yielding an equivalence between rigid analytic motives with good reduction and unipotent algebraic motives over the residue field, also in mixed characteristic.  相似文献   
82.
Density Functional Theory employing hybrid and M06 functionals in combination with three different basis sets is used to calculate the ground state of a cage like (ZnO)12 nanocluster which has been consistently reported as the more stable cluster for its particular size. B3LYP and B3PW91 hybrid functionals combined with 6‐31+G*, Lanl2dz and SDD basis sets are employed to treat the ZnO molecular system. Alternatively, three M06 functionals in combination with three basis sets are employed in the nanostructure calculations. Results obtained by treating ZnO sodalite cage nanocluster with M06 functionals demonstrated comparable quality to results obtained with hybrid functionals. Within this study, efficient theoretical DFT methods with the widely known hybrid and the recently created M06 meta‐hybrid functionals are employed to study nanostructured ZnO. Our resulting parameters provide a fresh approach performance wise on the different theoretical methods to treat transition metal nanostructures, particularly, ZnO nanoclusters geometry and electronic structure.  相似文献   
83.
84.
85.

The environmental impacts associated with the exploitation and transformation of fossil resources aggravate the planet's situation in terms of climate change. Due to this, this paper studies an alternative use of mineral coal as a precursor to obtaining new materials with different properties to the starting coals. The thermal degradation of two Colombian semi-anthracites is analyzed through the thermogravimetry (TG) technique coupled to a Fourier transform infrared spectroscopy (FTIR) equipment from room temperature (25 °C) to 900 °C, at a heating rate of 10 K min?1 in an inert atmosphere. The catalytic effect of the addition of silicon to these samples before being subjected to a carbonization process is evaluated during this process. The results indicated that the primary reaction occurs in the temperature range between 400 and 680 °C, where the highest mass loss rate was observed. At the end of the heating process, the TG profile of the samples with silicon addition showed losses between 14.33 and 18.82% in mass, these values being slightly higher compared to the starting and demineralized samples. The release of water, light gases such as CO2, CH4, and species such as toluene, phenol and formic acid was identified in most of the samples. The presence of silica seems to favor the release of all these species, being more evident in one of the semi-anthracites studied. According to the results obtained, it is proved that the presence of silicon in samples subjected to carbonization processes has a catalytic effect that improves some characteristics of the new materials obtained, thus contributing to the use of carbon to get new materials.

  相似文献   
86.
Electroweak radiative corrections to muon capture on nuclei are computed and found to be sizable. They enhance the capture rates for hydrogen and helium by 2.8% and 3.0%, respectively. As a result, the value of the induced pseudoscalar coupling, g(P)(exp), extracted from a recent hydrogen 1S singlet capture experiment is increased by about 21% to g(P)(exp)=7.3+/-1.2 and brought into good agreement with the prediction of chiral perturbation theory, g(P)(theory)=8.2+/-0.2. Implications for helium capture rate predictions are also discussed.  相似文献   
87.
88.
The pivalates RZnOPiv?Mg(OPiv)X?n LiCl (OPiv=pivalate; R=aryl; X=Cl, Br, I) stand out amongst salt‐supported organometallic reagents, because apart from their effectiveness in Negishi cross‐coupling reactions, they show more resistance to attack by moist air than conventional organometallic compounds. Herein a combination of synthesis, coupling applications, X‐ray crystallographic studies, NMR (including DOSY) studies, and ESI mass spectrometric studies provide details of these pivalate reagents in their own right. A p‐tolyl case system shows that in [D8]THF solution these reagents exist as separated Me(p‐C6H4)ZnCl and Mg(OPiv)2 species. Air exposure tests and X‐ray crystallographic studies indicate that Mg(OPiv)2 enhances the air stability of aryl zinc species by sequestering H2O contaminants. Coupling reactions of Me(p‐C6H4)ZnX (where X=different salts) with 4‐bromoanisole highlight the importance of the presence of Mg(OPiv)2. Insight into the role of LiCl in these multicomponent mixtures is provided by the molecular structure of [(THF)2Li2(Cl)2(OPiv)2Zn].  相似文献   
89.
Hydrogen bonds (HB) are arguably the most important noncovalent interactions in chemistry. We study herein how differences in connectivity alter the strength of HBs within water clusters of different sizes. We used for this purpose the interacting quantum atoms energy partition, which allows for the quantification of HB formation energies within a molecular cluster. We could expand our previously reported hierarchy of HB strength in these systems (Phys. Chem. Chem. Phys., 2016, 18 , 19557) to include tetracoordinated monomers. Surprisingly, the HBs between tetracoordinated water molecules are not the strongest HBs despite the widespread occurrence of these motifs (e.g., in ice Ih). The strongest HBs within H2O clusters involve tricoordinated monomers. Nonetheless, HB tetracoordination is preferred in large water clusters because (a) it reduces HB anticooperativity associated with double HB donors and acceptors and (b) it results in a larger number of favorable interactions in the system. Finally, we also discuss (a) the importance of exchange-correlation to discriminate among the different examined types of HBs within H2O clusters, (b) the use of the above-mentioned scale to quickly assess the relative stability of different isomers of a given water cluster, and (c) how the findings of this research can be exploited to indagate about the formation of polymorphs in crystallography. Overall, we expect that this investigation will provide valuable insights into the subtle interplay of tri- and tetracoordination in HB donors and acceptors as well as the ensuing interaction energies within H2O clusters.  相似文献   
90.
Luminescent quantum dots (QDs) are colloidal semiconductor nanocrystals consisting of an inorganic core covered by a molecular layer of organic surfactants. Although QDs have been known for more than thirty years, they are still attracting the interest of researchers because of their unique size-tunable optical and electrical properties arising from quantum confinement. Moreover, the controlled decoration of the QD surface with suitable molecular species enables the rational design of inorganic-organic multicomponent architectures that can show a vast array of functionalities. This minireview highlights the recent progress in the use of surface-modified QDs – in particular, those based on cadmium chalcogenides – as supramolecular platforms for light-related applications such as optical sensing, triplet photosensitization, photocatalysis and phototherapy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号