首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   203篇
  免费   4篇
化学   56篇
力学   3篇
数学   30篇
物理学   118篇
  2023年   2篇
  2022年   2篇
  2021年   2篇
  2020年   8篇
  2019年   6篇
  2018年   3篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   14篇
  2012年   11篇
  2011年   8篇
  2010年   3篇
  2009年   10篇
  2008年   13篇
  2007年   7篇
  2006年   9篇
  2005年   11篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   8篇
  2000年   5篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   5篇
  1995年   6篇
  1994年   9篇
  1993年   8篇
  1992年   6篇
  1991年   5篇
  1990年   4篇
  1988年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   2篇
  1978年   3篇
  1977年   1篇
  1974年   1篇
排序方式: 共有207条查询结果,搜索用时 328 毫秒
11.
The distances and orientations among reactant centers in the active site of coenzyme B12-dependent ethanolamine deaminase from Salmonella typhimurium have been characterized in the Co(II)-product radical pair state by using X-band electron paramagnetic resonance (EPR) and two-pulse electron spin-echo envelope modulation (ESEEM) spectroscopies in the disordered solid state. The unpaired electron spin in the product radical is localized on C2. Our approach is based on the orientation-selection created in the EPR spectrum of the biradical by the axial electron-electron dipolar interaction. Simulation of the EPR line shape yielded a best-fit Co(II)-C2 distance of 9.3 A. ESEEM spectroscopy performed at four magnetic field values addressed the hyperfine coupling of the unpaired electron spin on C2 with 2H in the C5' methyl group of 5'-deoxyadenosine and in the beta-2H position at C1 of the radical. Global ESEEM simulations (over the four magnetic fields) were weighted by the orientation dependence of the EPR line shape. A Nelder-Mead direct search fitting algorithm was used to optimize the simulations. The results lead to a partial model of the active site, in which C5' is located a perpendicular distance of 1.6 A from the Co(II)-C2 axis, at distances of 6.3 and 3.5 A from Co(II) and C2, respectively. The van der Waals contact of the C5'-methyl group and C2 indicates that C5' remains close to the radical species during the rearrangement step. The C2-Hs-C5' angle including the strongly coupled hydrogen, Hs, and the C5'-Hs orientation relative to the C1-C2 axis are consistent with a linear hydrogen atom transfer coordinate and an in-line acceptor p-orbital orientation. The trigonal plane of the C2 atom defines sub-spaces within the active site for C5' radical migration and hydrogen atom transfers (side of the plane facing Co(II)) and amine migration (side of the plane facing away from Co(II)).  相似文献   
12.
13.
14.
Sodium-ion batteries (NIBs) utilize cheaper materials than lithium-ion batteries (LIBs) and can thus be used in larger scale applications. The preferred anode material is hard carbon, because sodium cannot be inserted into graphite. We apply experimental entropy profiling (EP), where the cell temperature is changed under open circuit conditions. EP has been used to characterize LIBs; here, we demonstrate the first application of EP to any NIB material. The voltage versus sodiation fraction curves (voltage profiles) of hard carbon lack clear features, consisting only of a slope and a plateau, making it difficult to clarify the structural features of hard carbon that could optimize cell performance. We find additional features through EP that are masked in the voltage profiles. We fit lattice gas models of hard carbon sodiation to experimental EP and system enthalpy, obtaining: 1. a theoretical maximum capacity, 2. interlayer versus pore filled sodium with state of charge.  相似文献   
15.
The magnetic field distribution around the vortices in TmNi2B2C in the paramagnetic phase was studied experimentally as well as theoretically. The vortex form factor, measured by small-angle neutron scattering, is found to be field independent up to 0.6Hc2 followed by a sharp decrease at higher fields. The data are fitted well by solutions to the Eilenberger equations when paramagnetic effects due to the exchange interaction with the localized 4f Tm moments are included. The induced paramagnetic moments around the vortex cores act to maintain the field contrast probed by the form factor.  相似文献   
16.
Fabrication of bio‐templated metallic structures is limited by differences in properties, processing conditions, packing, and material state(s). Herein, by using undercooled metal particles, differences in modulus and processing temperatures can be overcome. Adoption of autonomous processes such as self‐filtration, capillary pressure, and evaporative concentration leads to enhanced packing, stabilization (jamming) and point sintering with phase change to create solid metal replicas of complex bio‐based features. Differentiation of subtle differences between cultivars of the rose flower with reproduction over large areas shows that this biomimetic metal patterning (BIOMAP) is a versatile method to replicate biological features either as positive or negative reliefs irrespective of the substrate. Using rose petal patterns, we illustrate the versatility of bio‐templated mapping with undercooled metal particles at ambient conditions, and with unprecedented efficiency for metal structures.  相似文献   
17.
Thermal conductivity and specific heat were measured in the superconducting state of the heavy-fermion material Ce(1-x)La(x)CoIn5. With increasing impurity concentration x, the suppression of T(c) is accompanied by the increase in residual electronic specific heat expected of a d-wave superconductor, but it occurs in parallel with a decrease in residual electronic thermal conductivity. This contrasting behavior reveals the presence of uncondensed electrons coexisting with nodal quasiparticles. An extreme multiband scenario is proposed, with a d-wave superconducting gap on the heavy-electron sheets of the Fermi surface and a negligible gap on the light, three-dimensional pockets.  相似文献   
18.
The upper critical field, H(c2), of Mg(B1-xCx)(2) has been measured in order to probe the maximum magnetic field range for superconductivity that can be attained by C doping. Carbon doped MgB2 filaments were prepared, and for carbon levels below 4% the transition temperatures are depressed by about 1 K/% C and H(c2)(T=0) rises by about 5 T/% C. This means that 3.8% C substitution will depress T(c) from 39.2 to 36.2 K and raise H(c2)(T=0) from 16.0 to 32.5 T. These rises in H(c2) are accompanied by a rise in resistivity at 40 K from about 0.5 to about 10 microOmega cm.  相似文献   
19.
Superconductivity in dense MgB2 wires   总被引:11,自引:0,他引:11  
MgB2 becomes superconducting just below 40 K. Whereas porous polycrystalline samples of MgB2 can be synthesized from boron powders, in this Letter we demonstrate that dense wires of MgB2 can be prepared by exposing boron filaments to Mg vapor. The resulting wires have a diameter of 160 microm, are better than 80% dense, and manifest the full chi = -1/4pi shielding in the superconducting state. Temperature-dependent resistivity measurements indicate that MgB2 is a highly conducting metal in the normal state with rho(40 K) = 0.38 microOmega cm. By using this value, an electronic mean-free path, l approximately 600 A can be estimated, indicating that MgB2 wires are well within the clean limit. Tc, Hc2(T), and Jc data indicate that MgB2 manifests comparable or better superconducting properties in dense wire form than it manifests as a sintered pellet.  相似文献   
20.
We present detailed thermodynamic and transport measurements on single crystals of the recently discovered binary intermetallic superconductor, SrSn(4). We find this material to be a slightly anisotropic three-dimensional, strongly coupled, possibly multiband, superconductor. Hydrostatic pressure causes a decrease in the superconducting transition temperature at the rate of ≈?-?0.068?K?kbar(-1). Band structure calculations are consistent with experimental data on the Sommerfeld coefficient and upper superconducting critical field anisotropy, and suggest a complex, multi-sheet Fermi surface formed by four bands.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号