首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6031篇
  免费   140篇
  国内免费   36篇
化学   4157篇
晶体学   91篇
力学   136篇
数学   1015篇
物理学   808篇
  2022年   28篇
  2021年   44篇
  2020年   43篇
  2019年   64篇
  2018年   59篇
  2017年   51篇
  2016年   121篇
  2015年   118篇
  2014年   113篇
  2013年   332篇
  2012年   270篇
  2011年   333篇
  2010年   157篇
  2009年   149篇
  2008年   294篇
  2007年   322篇
  2006年   273篇
  2005年   304篇
  2004年   256篇
  2003年   287篇
  2002年   238篇
  2001年   103篇
  2000年   90篇
  1999年   93篇
  1998年   74篇
  1997年   91篇
  1996年   113篇
  1995年   92篇
  1994年   89篇
  1993年   66篇
  1992年   57篇
  1991年   64篇
  1990年   51篇
  1989年   63篇
  1988年   74篇
  1987年   59篇
  1986年   52篇
  1985年   79篇
  1984年   101篇
  1983年   71篇
  1982年   92篇
  1981年   100篇
  1980年   91篇
  1979年   76篇
  1978年   78篇
  1977年   74篇
  1976年   68篇
  1975年   62篇
  1974年   48篇
  1973年   39篇
排序方式: 共有6207条查询结果,搜索用时 31 毫秒
81.
Specific coiled-coil heterotrimers result from steric matching of hydrophobic core side chains. A 2:1 heterotrimer is formed by peptides containing alanine or cyclohexylalanine, respectively, at a central core residue. Detailed thermodynamic analysis reveals that the designed complex is considerably more stable than the corresponding alanine homotrimer (deltaT(m) = 25 degrees C, deltadeltaG(unf) = 4.5 kcal/mol), while control complexes with naphthylalanine or cyclopropylalanine peptides are much less stable. However, the cyclohexylalanine homotrimer is of comparable stability to the 2:1 complex, prompting an investigation of multiply substituted peptides. A specific 1:1:1 heterotrimer is formed from three independent peptide strands, each bearing one large (cyclohexylalanine) and two small (alanine) side chains at the same three core positions but in different order. The combined impact of three substitutions improves specificity to the point where each pure peptide and all pairwise equimolar mixtures form significantly less stable complexes (deltaTm = 22-24 degrees C). The capacity for specific complex formation governed by multiple unnatural core side chains should facilitate design of numerous new peptide assemblies.  相似文献   
82.
Summary In the preceding paper we reported on a docking study with the SYSDOC program for predicting the binding sites of huperzine A in acetylcholinesterase (AChE) [Pang, Y.-P. and Kozikowski, A.P., J. Comput.-Aided Mol. Design, 8 (1994) 669]. Here we present a prediction of the binding sites of 1-benzyl-4-[(5,6-dimethoxy-1-indanon-2-yl)methyl]piperidine (E2020) in AChE by the same method. E2020 is one of the most potent and selective reversible inhibitors of AChE, and this molecule has puzzled researchers, partly due to its flexible structure, in understanding how it binds to AChE. Based on the results of docking 1320 different conformers of E2020 into 69 different conformers of AChE and on the pharmacological data reported for E2020 and its analogs, we predict that both the R- and the S-isomer of E2020 span the whole binding cavity of AChE, with the ammonium group interacting mainly with Trp84, Phe330 and Asp72, the phenyl group interacting mainly with Trp84 and Phe330, and the indanone moiety interacting mainly with Tyr70 and Trp279. The topography of the calculated E2020 binding sites provides insights into understanding the high potency of E2020 in the inhibition of AChE and provides hints as to possible structural modifications for identifying improved AChE inhibitors as potential therapeutics for the palliative treatment of Alzheimer's disease.  相似文献   
83.
Applications of benzotriazole methodology for the preparation of heterocyclic compounds are reviewed. The characteristic advantages of benzotriazole as a synthetic auxiliary are first briefly considered. This is followed by a summary of its use in ring synthesis in which the construction of small; five-membered; six-membered; and larger heterocyclic rings using benzotriazole methodology are each examined separately. Finally, consideration of the use of benzotriazole in the ring annulation - particularly benzannulation - of heterocycles. Subsequent sections deal with the introduction of substituents into aromatic heterocycles; the ring substitution of saturated heterocycles; and benzotriazole assisted modification of heterocyclic substituents. The present review supplements a recent comprehensive review of benzotriazole chemistry [1] which covers the literature through 1996.  相似文献   
84.
Abstract— The binding parameters of bicarbonate to the thylakoid membrane at different formate concentrations have been established [Stemler and Murphy (1983) Photochem. Phorobiol. 38, 701–707]. Based on these parameters, predictions could be made concerning the effects of bicarbonate and formate on photosynthetic electron flow. In this work these effects of various concentrations of bicarbonate and formate are measured and compared to predictions from the binding study. Electron flow is measured between QA and QB (the primary and secondary quinone acceptors) and QB and the plastoquinone pool. Also, these same concentration effects are determined for silicomolybdate supported oxygen evolution. It is found that the results of the bicarbonate binding study are in good agreement with the concentration dependence determined for the quinone reactions, as well as the silicomolybdate reaction. The bicarbonate concentrations required for half-maximal effects are approximately 100 μM, 300 μM and 1.3 mM in the presence of 0, 20 mM and 100 mM formate, respectively. It is concluded that a hierarchy of possible electron flow rates exist. The slowest rates occur when formate is bound. A substantially higher rate occurs when neither formate nor bicarbonate (< 2 μM) are present, but only chloride is present. The highest rates of electron flow occur when bicarbonate is bound. The QA- QB→ Qa Qb? Qa? Qb2– PQ → Qa Qb- PQ2–, and the silicomolybdate reactions all have the same concentration dependence on formate and bicarbonate. From this it is concluded that a single binding site for formate and bicarbonate affect all of these reactions. The possibility that multiple sites exist with approximately equal affinities for bicarbonate cannot be excluded.  相似文献   
85.
3,4-Diformyl-2,5-dimethylpyrrole (1) reacts with ,ω-diamino-alkanes, NH2(CH2)nNH2t' to form either the potentially tautomeric 2:2 macrocyclic adduct (7a) (8), when N = 2, or the potentially tautomeric 1:1 bicyclic adduct (18) (19), when N = 4, 5, 6, and 12. 1H and 13C N.m.r. spectral data indicate that the 2-azafulvene structures predominate for both types of cycloadducts. Only polymeric material was obtained when N = 3.  相似文献   
86.
87.
The binding of a series of p-alkylbenzamidinium chloride inhibitors to the serine proteinase trypsin over a range of temperatures has been studied using isothermal titration (micro)calorimetry and molecular dynamics simulation techniques. The inhibitors have small structural variations at the para position of the benzamidinium ion. They show small differences in relative binding affinity but large compensating differences in enthalpy and entropy. Binding affinity decreases with increased branching at the first carbon but increases with increasing the length of a linear alkyl substituent, suggesting that steric hindrance and hydrophobic interactions play dominant roles in binding. Structural analysis showed that the backbone of the enzyme was unaffected by the change of the para substituent. In addition, binding does not correlate strongly with octanol/water partition data. To further characterize this system, the change in the heat capacity on binding, the change in solvent-accessible surface area on binding, the effect of inhibitor binding on the hydration of the active site, the pK(a) of His57, and interactions within the catalytic triad have been investigated. Although the changes in inhibitor structure are small, it is demonstrated that simple concepts such as steric hindrance, hydrophobicity, and buried surface area are insufficient to explain the binding data. Other factors, such as access to the binding site and the cost of dehydration of the active site, are of equal or greater importance.  相似文献   
88.
Tetra-n-butylammonium hexachloroplatinate (IV) reacts with lithium methyl/lithium iodide in ether to give a solution containing lithium hexamethylplatinate (IV). With lithium methyl/lithium bromide in ether however, tetrabutylammonium hexamethylplatinate (IV) is precipitated together with lithium halides. Solid [Bu4N)2[Pt(Ch3)6] is stable under nitrogen at room temperature, but ether solutions of [Pt(Ch3)6]2- decompose in a few minutes at room temperature in the absence of excess lithium methyl.  相似文献   
89.
One-pot reactions of sulfinic acid salts (produced from organometallic reagents with SO2) with N-chlorobenzotriazole gave the corresponding N-alkane-, N-arene-, and N-heteroenesulfonylbenzotriazoles 3a-j in 41-93% yields. Reagents 3a-j are efficient sulfonylating agents, reacting at 20-80 degrees C with various primary and secondary aliphatic amines to yield the corresponding sulfonamides in 64-100% yields.  相似文献   
90.
The reactivity of the bifunctionalized ligand NC(Br)N-I 1 [IC(6)H(2)(CH(2)NMe(2))(2)-3,5-Br-4] has been studied as a versatile synthon for organic and/or organometallic synthesis. Chemoselective metalation (M = Pd, Pt, Li) at the C(aryl)-I or C(aryl)-Br bonds was achieved by choosing the appropriate metal precursors. In this way a series of Pt(II) and Pd(II) complexes were prepared that have a second functional group available for further reactions. These Pt(II) and Pd(II) complexes were subjected to a wide range of organic and organometallic reactions, revealing the remarkable stability of their M-C sigma-bond and opening an easy route for the synthesis of mono- and (hetero)bimetallic building blocks. The scope of the chemistry of such building blocks shows that they are good candidates for use in the synthesis of dendrimers, bioorganometallic systems, or polymetallic materials. The X-ray crystal structures of the most representative complexes (2, 3a, 19, 20, and 24) are also reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号