首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2553篇
  免费   59篇
  国内免费   9篇
化学   1895篇
晶体学   45篇
力学   30篇
数学   83篇
物理学   568篇
  2022年   10篇
  2021年   20篇
  2020年   22篇
  2019年   23篇
  2018年   26篇
  2016年   24篇
  2015年   39篇
  2014年   61篇
  2013年   104篇
  2012年   129篇
  2011年   137篇
  2010年   81篇
  2009年   77篇
  2008年   123篇
  2007年   173篇
  2006年   152篇
  2005年   147篇
  2004年   98篇
  2003年   101篇
  2002年   112篇
  2001年   62篇
  2000年   40篇
  1999年   25篇
  1998年   22篇
  1997年   38篇
  1996年   29篇
  1995年   23篇
  1994年   25篇
  1993年   29篇
  1992年   36篇
  1991年   31篇
  1990年   37篇
  1989年   26篇
  1988年   35篇
  1987年   35篇
  1986年   38篇
  1985年   51篇
  1984年   36篇
  1983年   23篇
  1982年   25篇
  1981年   26篇
  1980年   27篇
  1979年   34篇
  1978年   23篇
  1977年   28篇
  1976年   23篇
  1975年   28篇
  1974年   28篇
  1973年   13篇
  1968年   12篇
排序方式: 共有2621条查询结果,搜索用时 31 毫秒
161.
Pulsed EPR spectroscopy was employed to determine reaction rate constants at an early stage of addition reactions in radical polymerizations triggered by four initiator radicals, which were generated by photodissociation of four parent molecules. Two monomers (tert‐butylacrylate and tert‐butylmethacrylate) were examined as reactant. Stern–Volmer analysis on the measured decay time of electron spin echo intensity of reacting radicals provides rate constants for addition reactions. We focused on rate constants for the second step reaction between monomer and adduct radical that is produced by the first step addition reaction between initiator radical and monomer. The rate constant measured by pulsed EPR was evaluated by theoretical calculations in the light of (1) enthalpy difference between product radical and reactants and (2) charge transfer interaction between reacting radical and monomer. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
162.
This article reports experimental investigations on the use of RF resonators for continuous-wave electron paramagnetic resonance (cw-EPR) and proton nuclear magnetic resonance (NMR) imaging. We developed a composite resonator system with multi-coil parallel-gap resonators for co-registration EPR/NMR imaging. The resonance frequencies of each resonator were 21.8MHz for NMR and 670MHz for EPR. A smaller resonator (22mm in diameter) for use in EPR was placed coaxially in a larger resonator (40mm in diameter) for use in NMR. RF magnetic fields in the composite resonator system were visualized by measuring a homogeneous 4-hydroxy-2,2,6,6-tetramethyl-piperidinooxy (4-hydroxy-TEMPO) solution in a test tube. A phantom of five tubes containing distilled water and 4-hydroxy-TEMPO solution was also measured to demonstrate the potential usefulness of this composite resonator system in biomedical science. An image of unpaired electrons was obtained for 4-hydroxy-TEMPO in three tubes, and was successfully mapped on the proton image for five tubes. Technical problems in the implementation of a composite resonator system are discussed with regard to co-registration EPR/NMR imaging for animal experiments.  相似文献   
163.
Iketaki Y  Watanabe T  Bokor N  Fujii M 《Optics letters》2007,32(16):2357-2359
The vectorial Debye integral shows that tightly focused Laguerre-Gaussian (LG) beams have a residual intensity at the focal point for linear polarization, for a topological charge of m=1 and 2. We measured the shapes of linearly and circularly polarized LG beams and found that a central intensity appeared at m=1 and 2 for linear and right-handed circular polarization, however, it is completely canceled for left-handed circular polarization. In general, when the orbital angular momentum of the LG beam is parallel to the spin angular momentum of the photons, zero intensity is always achieved at the focus.  相似文献   
164.
Artificial nucleic acids are widely used in various technologies, such as nucleic acid therapeutics and DNA nanotechnologies requiring excellent duplex-forming abilities and enhanced nuclease resistance. 2′-O,4′-C-Methylene-bridged nucleic acid/locked nucleic acid (2′,4′-BNA/LNA) with 1,3-diaza-2-oxophenoxazine (BNAP ( BH )) was previously reported. Herein, a novel BH analogue, 2′,4′-BNA/LNA with 9-(2-aminoethoxy)-1,3-diaza-2-oxophenoxazine (G-clamp), named BNAP-AEO ( BAEO ), was designed. The BAEO nucleoside was successfully synthesized and incorporated into oligodeoxynucleotides (ODNs). ODNs containing BAEO possessed up to 104-, 152-, and 11-fold higher binding affinities for complementary (c) RNA than those of ODNs containing 2′-deoxycytidine ( C ), 2′,4′-BNA/LNA with 5-methylcytosine ( L ), or 2′-deoxyribonucleoside with G-clamp ( PAEO ), respectively. Moreover, duplexes formed by ODN bearing BAEO with cDNA and cRNA were thermally stable, even under molecular crowding conditions induced by the addition of polyethylene glycol. Furthermore, ODN bearing BAEO was more resistant to 3′-exonuclease than ODNs with phosphorothioate linkages.  相似文献   
165.
A range of bis(trimethylsilyl)methyl‐substituted aryl derivatives was prepared by using a Kumada–Corriu cross‐coupling reaction. The regioselective metalation of the resulting bis(trimethylsilyl)methyl‐substituted aryl derivatives bearing this bulky silyl group allowed the generation of functionalized aromatics. A regioselective switch in the presence or in the absence of the bis(trimethylsilyl)methyl group has been demonstrated. Furthermore, this silyl group was converted into a formyl group or a styryl group, enhancing the scope of application of such bis(trimethylsilyl)methyl‐substituted arenes.  相似文献   
166.
Non‐coordinative interactions between a metal ion and the aromatic ring of a fluorophore can act as a versatile sensing mechanism for the detection of metal ions with a large emission change of fluorophores. We report the design of fluorescent probes based on arene–metal‐ion interactions and their biological applications. This study found that various probes having different fluorophores and metal binding units displayed significant emission redshift upon complexation with metal ions, such as AgI, CdII, HgII, and PbII. X‐ray crystallography of the complexes confirmed that the metal ions were held in close proximity to the fluorophore to form an arene–metal‐ion interaction. Electronic structure calculations based on TDDFT offered a theoretical basis for the sensing mechanism, thus showing that metal ions electrostatically modulate the energy levels of the molecular orbitals of the fluorophore. A fluorescent probe was successfully applied to the ratiometric detection of the uptake of CdII ions and hydrogen sulfide (H2S) in living cells. These results highlight the utility of interactions between arene groups and metal ions in biological analyses.  相似文献   
167.
Colloidal crystallization and amorphous solidification of deionized suspensions of the polydispersed cationic gel spheres of lightly cross-linked poly(2-vinylpyridine), CAIBA-P2VP (107~113 nm in diameter, ±19~22 nm in dispersity), have been studied from the reflection spectroscopy, morphology, phase diagram, and elastic property. Crystallization takes place even for the polydispersed cationic gel spheres by the significant contribution of the extended electrical double layers formed around the spheres. Critical concentrations of melting coexisted with ion exchange resins were around 0.02 in volume fraction and high compared with those of other cationic and anionic gel crystals examined hitherto. The densities (ρ) of CAIBA-P2VP in suspension state, i.e., weight percent of the gel spheres divided by the corresponding volume percent, was around 0.3. The ρ values decreased sharply with decreasing size of P2VP gel spheres, which supports the small gel spheres containing much water inside and being softer than the large ones. The closest intersphere distances of the crystals and/or amorphous solids were much longer than the hydrodynamic diameters of the gel spheres especially at low sphere concentrations. Fluctuation parameters (b) evaluated from the rigidities of CAIBA-P2VP (0.15~0.28) were large compared with those of gel crystals of large-sized P2VP-based cationic gel spheres, anionic thermosensitive gel spheres of poly(N-isopropylacrylamide) (0.05~0.09) and further much larger than those of typical colloidal hard spheres (around 0.03). The dispersity in sphere size played an important role for distinguishing crystal and amorphous solid. Importance of the extended electrical double layers around the cationic gel spheres is supported in addition to the excluded volume effect of the sphere themselves on the crystallization and/or solidification.  相似文献   
168.
A novel 2,6-anthrylene-linked bis(m-terphenylcarboxylic acid) strand ( 1 ) self-associates into a racemic double-helix. In the presence of chiral mono- and diamines, either a right- or left-handed double-helix was predominantly induced by chiral amines sandwiched between the carboxylic acid strands with accompanying stacking of the two prochiral anthracene linker units in an enantiotopic face-selective way, as revealed by circular dichroism and NMR spectral analyses. The photoirradiation of the optically active double helices complexed with chiral amines proceeded in a diastereo- (anti or syn) and enantiodifferentiating way to afford the chiral anti-photodimer with up to 98 % enantiomeric excess when (R)-phenylethylamine was used as a chiral double-helix inducer. The resulting optically active anti-photodimer can recognize the chirality of amines and diastereoselectively complex with chiral amines.  相似文献   
169.
π-Stacked polymers, which consist of layered π-electron systems in a polymer, can be expected to be used in molecular electronic devices. However, the construction of a stable π-stacked structure in a polymer is considerably challenging because it requires sophisticated designs and precise synthetic methods. Herein, we present a novel π-stacked architecture based on poly(quinolylene-2,3-methylene) bearing alanine derivatives as the side chain, obtained through the living cyclo-copolymerization of an o-allenylaryl isocyanide. In the resulting polymer, the neighboring quinoline rings of the main chain form a layered structure with π–π interactions, which is stabilized by intramolecular hydrogen bonds. The vicinal quinoline units form two independent helices and the whole molecule is a twisted-tape structure. This structure is established on the basis of UV/CD spectra, theoretical calculations, and atomic-force microscopy.  相似文献   
170.
π‐Stacked polymers, which consist of layered π‐electron systems in a polymer, can be expected to be used in molecular electronic devices. However, the construction of a stable π‐stacked structure in a polymer is considerably challenging because it requires sophisticated designs and precise synthetic methods. Herein, we present a novel π‐stacked architecture based on poly(quinolylene‐2,3‐methylene) bearing alanine derivatives as the side chain, obtained through the living cyclo‐copolymerization of an o‐allenylaryl isocyanide. In the resulting polymer, the neighboring quinoline rings of the main chain form a layered structure with π–π interactions, which is stabilized by intramolecular hydrogen bonds. The vicinal quinoline units form two independent helices and the whole molecule is a twisted‐tape structure. This structure is established on the basis of UV/CD spectra, theoretical calculations, and atomic‐force microscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号