首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   156篇
  免费   1篇
化学   81篇
晶体学   11篇
力学   9篇
数学   28篇
物理学   28篇
  2023年   1篇
  2022年   6篇
  2021年   6篇
  2020年   4篇
  2019年   6篇
  2018年   10篇
  2017年   8篇
  2016年   7篇
  2015年   5篇
  2014年   10篇
  2013年   12篇
  2012年   9篇
  2011年   20篇
  2010年   6篇
  2009年   11篇
  2008年   8篇
  2007年   11篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有157条查询结果,搜索用时 0 毫秒
21.
N‐implantation to GaSe single crystals was carried out perpendicular to c‐axis with ion beam of 6 × 1015 ions/cm2 dose having energy values 30 keV and 60 keV. Temperature dependent electrical conductivities and Hall mobilities of implanted samples were measured along the layer in the temperature range of 100‐320 K. It was observed that N‐implantation decreases the resistivity values down to 103 Ω‐cm depending on the annealing temperature, from the room temperature resistivity values of as‐grown samples lying in the range 106‐107 Ω‐cm. The temperature dependent conductivities exhibits two regions (100‐190 and 200‐320 K) with the activation energies of 234‐267 meV and 26‐74 meV, for the annealing temperatures of 500 and 700 °C, respectively. The temperature dependence of Hall mobility for the sample annealed at 500 °C shows abrupt increase and decrease as the ambient temperature increases. The analysis of the mobility‐temperature dependence in the studied temperature range showed that impurity scattering and lattice scattering mechanisms are effective at different temperature regions with high temperature exponent. Annealing of the samples at 700 °C shifted impurity scattering mechanism toward higher temperature regions. In order to obtain the information about the defect produced by N‐implantation, the carrier density was analyzed by using single donor‐single acceptor model. We found acceptor ionization energy as Ea = 450 meV, and acceptor and donor concentration as 1.3 × 1013 and Nd = 3.5 × 1010 cm−3, respectively. (© 2003 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
22.
Recent studies in the agronomic field indicate that the exogenous application of polyphenols can provide tolerance against various stresses in plants. However, the molecular processes underlying stress mitigation remain unclear, and little is known about the impact of exogenously applied phenolics, especially in combination with salinity. In this work, the impacts of exogenously applied chlorogenic acid (CA), hesperidin (HES), and their combination (HES + CA) have been investigated in lettuce (Lactuca sativa L.) through untargeted metabolomics to evaluate mitigation effects against salinity. Growth parameters, physiological measurements, leaf relative water content, and osmotic potential as well as gas exchange parameters were also measured. As expected, salinity produced a significant decline in the physiological and biochemical parameters of lettuce. However, the treatments with exogenous phenolics, particularly HES and HES + CA, allowed lettuce to cope with salt stress condition. Interestingly, the treatments triggered a broad metabolic reprogramming that involved secondary metabolism and small molecules such as electron carriers, enzyme cofactors, and vitamins. Under salinity conditions, CA and HES + CA distinctively elicited secondary metabolism, nitrogen-containing compounds, osmoprotectants, and polyamines.  相似文献   
23.
The dependence of crystalline structure and optical properties of pulp on anthraquinone (AQ) added to the soda process at different cooking times was determined in this study. Wheat (Triticum aestevum L.) straw was used as the raw material for pulp. Soda and soda-AQ processes were selected for pulping at 80 min and 120 min. The soda-AQ process improved the yield and viscosity of pulp delignification ratio for pulping in comparison with the soda process. Crystallinity of pulp samples decreased by adding anthraquinone to the soda process because of stabilized less ordered cellulose and amorphous hemicelluloses in pulp. It was determined that crystallinity of pulp samples decreased with longer cooking time, from 80 min to 120 min, in both soda and soda-AQ processes. Monoclinic structure was dominant in pulp samples; however, the triclinic structure ratio increased in both soda and soda-AQ processes compared to raw material. It was found that brightness and lightness values in pulp samples decreased when using anthraquinone depending on the changes of the crystalline structure.  相似文献   
24.
25.
FT-IR and FT-Raman spectra of 5-methoxysalicylic acid (5MeOSA) have been experimentally reported in the region of 4000–10 cm−1 and 4000–50 cm−1, respectively. The optimized geometric parameters, conformational equilibria, normal mode frequencies and corresponding vibrational assignments of 5MeOSA (C8H8O4) are theoretically examined by means of B3LYP hybrid density functional theory (DFT) method together with 6-31++G(d,p) basis set. Furthermore, reliable vibrational assignments have made on the basis of potential energy distribution (PED) calculated and the thermodynamics functions, highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) of 5MeOSA have been predicted. Calculations are employed for different conformations of 5MeOSA, both in gas phase and in solution. Solvent effects are investigated using chloroform and dimethylsulfoxide. All results indicate that B3LYP method is able to provide satisfactory results for predicting vibrational frequencies and the structural parameters, vibrational frequencies and assignments, IR and Raman intensities of 5MeOSA are solvent dependent.  相似文献   
26.
FT-IR and (1)H, (13)C, DEPT, COSY, NOESY, HETCOR, INADEQUATE NMR spectra of 1-phenylpiperazine (pp) have been reported for the first time except for its (1)H NMR spectrum. The vibrational frequencies and (1)H, (13)C NMR chemical shifts of pp (C(10)H(14)N(2)) have been calculated by means of the Hartree-Fock (HF) and Becke-Lee-Yang-Parr (BLYP) or Becke-3-Lee-Yang-Parr (B3LYP) density functional methods with 6-31G(d) and 6-31G(d,p) basis sets, respectively. Comparison between the experimental and the theoretical results indicates that density functional B3LYP method is superior to the scaled HF and BLYP approach for predicting vibrational frequencies and NMR properties.  相似文献   
27.
In this study, annealing effect on the structural, electrical, and optical characteristics of the quaternary Cu-Ag-In-Se (CAIS) thin films was investigated. These samples were deposited by co-evaporation of the Cu, Ag, In2Se3, and Se sources at the substrate temperature of 300 °C. The structural properties of the thin films were analyzed by means of X-ray diffraction, and the results indicated that all of the films were in the polycrystalline structure with the preferred orientation along (112) direction. From the optical measurements, the band gap values were found to vary between 1.38 and 1.45 eV with annealing processes. The temperature-dependent electrical conductivity of the samples was measured in the temperature range of 90–400 K. The films gained degenerate behavior with increasing annealing temperature. The carrier conduction mechanism was determined at high- and low-temperature regions by comparing thermionic emission and hopping parameters. Photoconductivity of the as-grown film showed that there was an increase in conductivity with increasing illumination intensity. From this measurement, the variation of photocurrent as a function of illumination intensity was determined.  相似文献   
28.
Sputtering technique has been used for the deposition of AgGaSe2 thin films onto soda-lime glass substrates using sequential layer-by-layer deposition of GaSe and Ag thin films. The analysis of energy dispersive analysis of X-ray (EDXA) indicated a Ga-rich composition for as-grown samples and there was a pronounce effect of post-annealing on chemical composition of AgGaSe2 thin film. X-ray diffraction (XRD) measurements revealed that Ag metallic phase exists in the amorphous AgGaSe2 structure up to annealing temperature 450 °C and then the structure turned to the single phase AgGaSe2 with the preferred orientation along (1 1 2) direction with the annealing temperature at 600 °C. The surface morphology of the samples was analyzed by scanning electron microscopy (SEM) measurements. The structural parameters related to chalcopyrite compounds have been calculated. Optical properties of AgGaSe2 thin films were studied by carrying out transmittance and reflectance measurements in the wavelength range of 325-1100 nm at room temperature. The absorption coefficient and the band gap values for as-grown and annealed samples were evaluated as 1.55 and 1.77 eV, respectively. The crystal-field and spin-orbit splitting levels were resolved. These levels (2.03 and 2.30 eV) were also detected from the photoresponse measurements almost at the same energy values. As a result of the temperature dependent resistivity and mobility measurements in the temperature range of 100-430 K, it was found that the decrease in mobility and the increase in carrier concentration following to the increasing annealing temperature attributed to the structural defects (tetragonal distortion, vacancies and interstitials).  相似文献   
29.
30.
Water insoluble sulfonated cellulose was prepared and applied for Cu2+ removal from water. The effects of sorbent dose, initial solution pH, temperature and initial Cu2+ concentration on the removal performance of sulfonated cellulose were investigated. Isothermal data were modeled with the Langmuir and Freundlich isotherm models. The Cu2+ sorption onto sulfonated cellulose followed the Langmuir isotherm model with the maximum sorption capacity of 8.2?mg-Cu2+/g. Removal of Cu2+ showed rapid initial kinetics; in 3?min removal of Cu2+ reached equilibrium status. Thermodynamic study revealed an exothermic sorption process. In addition, sulfonated cellulose is a kind of green and renewable sorbent because it can be easily regenerated by 0.1?M HCl.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号