首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   3篇
化学   51篇
力学   4篇
数学   2篇
物理学   20篇
  2024年   1篇
  2020年   2篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   9篇
  2012年   2篇
  2011年   5篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   6篇
  2006年   4篇
  2005年   1篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
  1997年   3篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1973年   1篇
  1969年   1篇
排序方式: 共有77条查询结果,搜索用时 31 毫秒
41.
Novel three‐residue helix‐turn secondary structures, nucleated by a helix at the N terminus, were generated in peptides that have ‘β‐Caa‐L ‐Ala‐L ‐Ala,’ ‘β‐Caa‐L ‐Ala‐γ‐Caa,’ and ‘β‐Caa‐L ‐Ala‐δ‐Caa’ (in which βCaa is C‐linked carbo‐β‐amino acid, γCaa is C‐linked carbo‐γ‐amino acid, and δ‐Caa is C‐linked carbo‐δ‐amino acid) at the C terminus. These turn structures are stabilized by 12‐, 14‐, and 15‐membered (mr) hydrogen bonding between NH(i)/CO(i+2) (i+2 is the last residue in the peptide) along with a 7‐mr hydrogen bond between CO(i)/NH(i+2). In addition, a series of α/β‐peptides were designed and synthesized with alternating glycine (Gly) and (S)‐β‐Caa to study the influence of an achiral α‐residue on the helix and helix‐turn structures. In contrast to previous results, the three ‘β–α–β’ residues at the C terminus (α‐residue being Gly) are stabilized by only a 13‐mr forward hydrogen bond, which resembles an α‐turn. Extensive NMR spectroscopic and molecular dynamics (MD) studies were performed to support these observations. The influence of chirality and side chain is also discussed.  相似文献   
42.
43.
We demonstrate that allenes, chiral 1,2-dienes, appended with basic functionality can serve as ligands for transition metals. We describe an allene-containing bisphosphine that, when coordinated to Rh(I), promotes the asymmetric addition of arylboronic acids to α-keto esters with high enantioselectivity. Solution and solid-state structural analysis reveals that one olefin of the allene can coordinate to transition metals, generating bi- and tridentate ligands.  相似文献   
44.
In this work, we report an effective, one-pot syntheses of benzo[4,5]imidazo[1,2-a]pyrimidine and pyrano[4,3-b]pyran derivatives using L-glutamine functionalized nanoparticles (Fe3O4@SiO2@L-glutamine NPs) under microwave irradiation. The organo-nanocatalyst underwent characterization through diverse techniques, including FT-IR, p-XRD, SEM, TEM, EDX, XPS, TGA, and VSM. Microwave irradiation and multicomponent reactions synergistically yield excellent product yields (≈80%–95%) in shorter reaction times (≈6–15 min) with a broader substrate scope. The organo-nanocatalyst displays notable catalytic efficacy, evidenced by high turnover numbers (TON) and turnover frequencies (TOF) across syntheses. This innovative protocol showcases exceptional efficiency, cost-effectiveness, and environmental friendliness, with advantages like minimal reaction conditions, easy catalytic recovery, recyclability, operational simplicity, and the use of eco-friendly solvents.  相似文献   
45.
Even though several quinazolinone derivatives have been synthesized, still there is a constant demand for designing and synthesis of new quinazolinone derivatives by fine-tuning the electronic and steric properties of substituents due to their interesting structure-based biological utilities and the versatile chemistry. While many of the synthetic routes are useful as building blocks in synthetic organic chemistry, the drawbacks of some of these methods like unsatisfactory or variable yields, prolonged reaction times, inadequate tolerance to other substrates, including the use of costly catalysts/reagents. This review article is mainly focused on various synthetic routes for the preparation of quinazolinones, their important properties and applications.  相似文献   
46.
Intermediates for many catalysis reactions reported in the literature are metal‐alkyl and metal‐alkenyl, including metallacycloalkane species. Synthesis and reactions of metal‐alkyl, alkenyl and metallacyle complexes have shown a great deal of development during the past few decades. This review summarizes the significant contributions reported on metal‐alkenyl compounds, specifically those containing at least a carbon chain with pendant alkene group [M―CH2CH2CH?CH2]. Although metal‐alkenyl complexes are stable with strong chelating diphosphines and with a decrease in the ligand donor strength, the complexes can decompose without any ambiguity. For example, platinum‐dialkenyl complexes react readily via β‐hydrogen elimination and reductive elimination promoted by the nature of the ligand, solvent and length of carbon chains. These complexes can also undergo intramolecular irreversible isomerization and this leads to the selective catalytic isomerization of 1‐alkenes to 2‐alkenes in the presence of platinum‐dialkenyl complexes as catalysts. Perhaps the most striking manifestations of flexibility are the facile and complete intramolecular and intermolecular alkene metathesis to yield the corresponding metallacycloalkenes in the presence of Grubbs’ catalysts. The diverse chemical reactivity of these complexes demonstrates both the scope and complexity of metal‐alkenyl chemistry depending on the nature of ligand and metal. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
47.
Integration of flexible data-analysis tools with cheminformatics methods is a prerequisite for successful identification and validation of “hits” in high-throughput screening (HTS) campaigns. We have designed, developed, and implemented a suite of robust yet flexible cheminformatics tools to support HTS activities at the Broad Institute, three of which are described herein. The “hit-calling” tool allows a researcher to set a hit threshold that can be varied during downstream analysis. The results from the hit-calling exercise are reported to a database for record keeping and further data analysis. The “cherry-picking” tool enables creation of an optimized list of hits for confirmatory and follow-up assays from an HTS hit list. This tool allows filtering by computed chemical property and by substructure. In addition, similarity searches can be performed on hits of interest and sets of related compounds can be selected. The third tool, an “S/SAR viewer,” has been designed specifically for the Broad Institute’s diversity-oriented synthesis (DOS) collection. The compounds in this collection are rich in chiral centers and the full complement of all possible stereoisomers of a given compound are present in the collection. The S/SAR viewer allows rapid identification of both structure/activity relationships and stereo-structure/activity relationships present in HTS data from the DOS collection. Together, these tools enable the prioritization and analysis of hits from diverse compound collections, and enable informed decisions for follow-up biology and chemistry efforts.  相似文献   
48.
Treatment of cyclic tert-trihalomethylcarbinols with CrCl(2) in THF/HMPA in the presence of aryl or aliphatic aldehydes initiates a cascade sequence of one carbon ring expansion-olefination affording conjugated exocyclic ketones. Acyclic tert-trihalomethylcarbinols undergo a comparable cascade of one carbon homologation-olefination.  相似文献   
49.
Combinatorial chemistry and high-throughput screening technologies produce huge amounts of data on a regular basis. Sieving through these libraries of compounds and their associated assay data to identify appropriate series for follow-up is a daunting task, which has created a need for computational techniques that can find coherent islands of structure-activity relationships in this sea. Structural unit analysis (SUA) examines an entire data set so as to identify the molecular substructures or fragments that distinguish compounds with high activity from those with average activity. The algorithm is iterative and follows set heuristics in order to generate the structural units. It produces graphs that represent a set of units, which become SUA rules. Finding all of the input structures that match these graphs generates clusters. The Apriori algorithm for association rule mining is adapted to explore all of the combinations of structural units that define useful series. User-defined constraints are applied toward series selection and the refinement of rules. The significance of a series is determined by applying statistical methods appropriate to each data set. Application to the NCI-H23 (DTP Human Tumor Cell Line Screen) database serves to illustrate the process by which structural series are identified. An application of the method to scaffold hopping is then discussed in connection with proprietary screening data from a lead optimization project directed toward the treatment of respiratory tract infections at Bayer Healthcare. SUA was able to successfully identify promising alternative core structures in addition to identifying compounds with above-average activity and selectivity.  相似文献   
50.
An extensive study of metabolites present in Excoecaria agallocha Linn . led to the isolation of three new ent‐labdane‐type diterpenoids, named agallochaexcoerins A–C ( 1 – 3 ), besides three known compounds. The skeleton present in compound 1 is rather unusual, containing of a seven‐membered lactone. The structures were elucidated on the basis of spectroscopic studies and comparison with known related compounds. The isolated compounds 1 – 6 were not active against Raw 264.7 (macrophage‐like), K 562 (leukemia), and COLO 205 (colon) human carcinoma cell lines.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号