首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   41篇
  国内免费   7篇
化学   511篇
晶体学   1篇
力学   35篇
综合类   3篇
数学   121篇
物理学   94篇
  2024年   1篇
  2023年   8篇
  2022年   22篇
  2021年   41篇
  2020年   46篇
  2019年   26篇
  2018年   30篇
  2017年   27篇
  2016年   43篇
  2015年   39篇
  2014年   52篇
  2013年   78篇
  2012年   49篇
  2011年   67篇
  2010年   44篇
  2009年   32篇
  2008年   31篇
  2007年   22篇
  2006年   12篇
  2005年   10篇
  2004年   10篇
  2003年   9篇
  2002年   10篇
  2001年   7篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   4篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1989年   3篇
  1985年   2篇
  1984年   2篇
  1982年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
  1971年   1篇
排序方式: 共有765条查询结果,搜索用时 15 毫秒
71.
In the present paper, the effects of temperature and volume fraction on thermal conductivity of SWCNT–Al2O3/EG hybrid nanofluid are investigated. Single-walled carbon nanotube with outer diameter of 1–2 nm and aluminum oxide nanoparticles with mean diameter of 20 nm with the ratio of 30 and 70%, respectively, were dispersed in the base fluid. The measurements were conducted on samples with volume fractions of 0.04, 0.08, 0.15, 0.3, 0.5, 0.8, 1.5 and 2.5. In order to investigate the effects of temperature on thermal conductivity of the nanofluid, this characteristic was measured in five different temperatures of 30, 35, 40, 45 and 50 °C. The results indicate that enhancement of nanoparticles’ thickness in low volume fractions and at any temperature causes a considerable increment in thermal conductivity of the nanofluid. In this study, the highest enhancement of thermal conductivity was 41.2% which was achieved at the temperature of 50 °C and volume fraction of 2.5%. Based on the experimental data, an experimental correlation and a neural network are presented and for thermal conductivity of the nanofluid in terms of volume fraction and temperature. Comparing outputs of the experimental correlation and the designed artificial neural network with experimental data, the maximum error values for the experimental correlation and the artificial neural network were, respectively, 2.6 and 1.94% which indicate the excellent accuracy of both methods in prediction of thermal conductivity.  相似文献   
72.
73.
Methanol in insulating oil has been proposed as a new marker for condition assessment of the solid insulation system of power transformers. In the current work, as a first step of using the new marker, an analytical static headspace gas chromatography/mass spectrometry method has been developed, optimized, and validated to measure methanol and ethanol contents in the insulating mineral oil. The analyzing setup consists of a 6890 N gas chromatograph equipped with a 5973 network mass spectrometer (MS) in the absence of a costly headspace autosampler, and the chromatography separation was performed on a 60 m × 320 µm × 0.5 µm VF-WAXms GC column. Calibration curves have been provided using several concentrations of the alcohols, and also limit of detection (LOD), limit of quantification (LOQ), and relative standard deviation percentage (RSD%) have been determined.  相似文献   
74.
75.
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.  相似文献   
76.
Research on Chemical Intermediates - This article presents an ultrasound-assisted dispersive magnetic solid-phase extraction method (USA-DMSPE) to preconcentration Cd(II) and Pb(II) simultaneously....  相似文献   
77.
Journal of Thermal Analysis and Calorimetry - Nanofluids are attractive alternatives for the current heat transfer fluids due to their remarkably higher thermal conductivity which leads to the...  相似文献   
78.
Journal of Thermal Analysis and Calorimetry - Heat exchangers are applicable in different industries and technologies, and their performance is influenced by different parameters. In addition to...  相似文献   
79.
Although separation of solutes from organic solutions is considered a challenging process, it is inevitable in various chemical, petrochemical and pharmaceutical industries. OSN membranes are the heart of OSN technology that are widely utilized to separate various solutes and contaminants from organic solvents, which is now considered an emerging field. Hence, numerous studies have been attracted to this field to manufacture novel membranes with outstanding properties. Thin-film composite (TFC) and nanocomposite (TFN) membranes are two different classes of membranes that have been recently utilized for this purpose. TFC and TFN membranes are made up of similar layers, and the difference is the use of various nanoparticles in TFN membranes, which are classified into two types of porous and nonporous ones, for enhancing the permeate flux. This study aims to review recent advances in TFC and TFN membranes fabricated for organic solvent nanofiltration (OSN) applications. Here, we will first study the materials used to fabricate the support layer, not only the membranes which are not stable in organic solvents and require to be cross-linked, but also those which are inherently stable in harsh media and do not need any cross-linking step, and all of their advantages and disadvantages. Then, we will study the effects of fabricating different interlayers on the performance of the membranes, and the mechanisms of introducing an interlayer in the regulation of the PA structure. At the final step, we will study the type of monomers utilized for the fabrication of the active layer, the effect of surfactants in reducing the tension between the monomers and the membrane surface, and the type of nanoparticles used in the active layer of TFN membranes and their effects in enhancing the membrane separation performance.  相似文献   
80.
This research aims to synthesize a specific and efficient sorbent to use in the extraction of apixaban from human plasma samples and its determination by high-performance liquid chromatography-tandem mass spectrometry. High specific surface area of metal-organic framework, magnetic property of iron oxide nanoparticles, selectively of molecular imprinted polymer toward the analyte, and the combination of dispersive solid-phase extraction method with a sensitive analysis system provided an efficient analytical method. In this study, first, a molecularly imprinted polymer combined with magnetic metal organic framework nanocomposite was prepared and then characterized using different techniques. Then the sorbent particles were used for selective extraction of the analyte from plasma samples. The efficiency of the method was improved by optimizing effective parameters. According to the validation results, wide linear range (1.02–200 ng mL−1), acceptable coefficient of determination (0.9938), low limit of detection (0.32 ng mL−1) and limit of quantification (1.02 ng mL−1), high extraction recovery (78%), and good precision (relative standard deviations ≤ 2.9% for intra- (n = 6) and interday (n = 6) precisions) were obtainable using the proposed method. These outcomes showed the high potential of the proposed method for screening apixaban in the human plasma samples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号