全文获取类型
收费全文 | 1547篇 |
免费 | 169篇 |
国内免费 | 150篇 |
专业分类
化学 | 1232篇 |
晶体学 | 15篇 |
力学 | 67篇 |
综合类 | 12篇 |
数学 | 137篇 |
物理学 | 403篇 |
出版年
2024年 | 2篇 |
2023年 | 13篇 |
2022年 | 38篇 |
2021年 | 43篇 |
2020年 | 46篇 |
2019年 | 56篇 |
2018年 | 54篇 |
2017年 | 42篇 |
2016年 | 61篇 |
2015年 | 69篇 |
2014年 | 76篇 |
2013年 | 119篇 |
2012年 | 124篇 |
2011年 | 147篇 |
2010年 | 77篇 |
2009年 | 90篇 |
2008年 | 95篇 |
2007年 | 67篇 |
2006年 | 80篇 |
2005年 | 69篇 |
2004年 | 68篇 |
2003年 | 58篇 |
2002年 | 95篇 |
2001年 | 71篇 |
2000年 | 42篇 |
1999年 | 44篇 |
1998年 | 21篇 |
1997年 | 14篇 |
1996年 | 14篇 |
1995年 | 8篇 |
1994年 | 14篇 |
1993年 | 11篇 |
1992年 | 4篇 |
1991年 | 7篇 |
1990年 | 2篇 |
1989年 | 2篇 |
1987年 | 2篇 |
1986年 | 5篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1981年 | 2篇 |
1980年 | 1篇 |
1978年 | 3篇 |
1975年 | 1篇 |
1973年 | 1篇 |
1969年 | 1篇 |
1957年 | 1篇 |
排序方式: 共有1866条查询结果,搜索用时 15 毫秒
151.
Yunlei?Zhou Bingchen?Li Minghui?Wang Jun?WangEmail author Huanshun?YinEmail author Shiyun?Ai 《Mikrochimica acta》2017,184(11):4359-4365
The authors describe a fluorometric assay for microRNA. It is based on two-step amplification involving (a) strand displacement replication and (b) rolling circle amplification. The strand displacement amplification system is making use of template DNA (containing a sequence that is complementary to microRNA-21) and nicking enzyme sites. After hybridization, the microRNA strand becomes extended by DNA polymerase chain reaction and then cleaved by the nicking enzyme. The DNA thus produced acts as a primer in rolling circle amplification. Then, the DNA probe SYBR Green II is added to bind to ssDNA to generate a fluorescent signal which increases with increasing concentration of microRNA. The method has a wide detection range that covers the10 f. to 0.1 nM microRNA concentration range and has a detection limit as low as 1.0 fM. The method was successfully applied to the determination of microRNA-21 in the serum of healthy and breast cancer patients. 相似文献
152.
Nanomaterials with localized surface plasmon resonance (LSPR) locating in the near-infrared region have broad application prospects in the field of biomedicine. However, the biggest problem that limits the biomedical application of such nanomaterials lies in two aspects: First, the potential long-term in vivo toxicity caused by the metabolism of many nanomaterials with LSPR effect; Second, most of current nanomaterials with LSPR effect are difficult to achieve LSPR wavelength tunability in the near-infrared region to adapt to different biomedical applications. Copper selenide nanomaterials are composed of selenium and copper, which are necessary nutrient elements for human life. Because of the active and flexible chemical properties of selenium and copper, copper selenide nanomaterials can not only be effectively degraded and utilized in human body, but also be endowed with various physicochemical properties by chemical modification or doping. Recently, copper selenide nanomaterials have shown unique properties such as LSPR in the near-infrared region, making them attractive for near-infrared thermal ablation, photoacoustic imaging, disease marker detection, multimode imaging, and so on. Currently, to the best of our knowledge, there is no review on the LSPR properties of copper selenide nanomaterials and its biomedical applications. This review first discusses the relationship between the physicochemical properties and the LSPR of copper selenide nanomaterials and then summarizes the latest progress in the application of copper selenide nanomaterials in biological detection, diagnosis, and treatment of diseases. In addition, the advantages, and prospects of copper selenide nanomaterials in biomedicine are also highlighted. 相似文献
153.
Xiaohui Shen Peng Li Xingwei Liu Shengli Chen Xinping Ai Hanxi Yang Yuliang Cao 《Chemical science》2021,12(26):9037
Many organic solvents have very desirable solution properties, such as wide temperature range, high solubility of Li salts and nonflammability, and should be able but fail in reality to serve as electrolyte solvents for Li-ion or -metal batteries due to their reduction instability. The origin of this interfacial instability remains unsolved and disputed so far. Here, we reveal for the first time the origin of the reduction stability of organic carbonate electrolytes by combining ab initio molecular dynamics (AIMD) simulations, density functional theory (DFT) calculations and electrochemical stability experiments. It is found that with the increase of the molar ratio (MR) of salt to solvent, the anion progressively enters into the solvation shell of Li+ to form an anion-induced ion–solvent-coordinated (AI-ISC) structure, leading to a “V-shaped” change of the LUMO energy level of coordinated solvent molecules, whose interfacial stability first decreases and then increases with the increased MRs of salt to solvent. This mechanism perfectly explains the long-standing puzzle about the interfacial compatibility of organic electrolytes with Li or similar low potential anodes and provides a basic understanding and new insights into the rational design of the advanced electrolytes for next generation lithium secondary batteries.By theoretical and experimental evidence, the underlying mechanism for the enhanced reduction stability of the HMRE is revealed, suggesting that the interfacial stability of the electrolyte can be adjusted through the modulation of the anion-induced ISC structure.The state-of-the-art electrolytes in Li-ion batteries (LIBs) are mostly based on 1.0 mol L−1 LiPF6/ethylene carbonate (EC)-based carbonate due to the surface passivation of the graphite anode by forming a stable solid electrolyte interphase (SEI). However, these electrolytes cannot operate well for new electrode materials and battery systems that are expected to have higher voltage, better safety and wider temperature range than current commercial LIBs.1–3 For example, EC-based carbonate electrolytes are easily oxidized on a high voltage cathode at or above 4.3 V, resulting in depletion of electrolytes, gas evolution and low coulombic efficiency, which reduce the cycle life and create safety hazards for LIBs.4 These problems of the conventional electrolyte significantly hinder the development of new generation lithium batteries and limit these batteries for high voltage and/or high capacity applications and operation in a wide temperature range.To overcome these problems, great efforts have been devoted in recent years to the development of new electrolytes, such as solid state electrolytes,5 ionic liquids,6–8 highly-concentrated electrolytes (HCEs),9 electrolyte stabilizing additive,10–13 and so on. Among them, the HCEs or high-molar-ratio electrolytes (HMREs) of salt to solvent have received particular attention, owing to their unusual electrochemical stability, nonflammability, and good compatibility with a wide range of anode and cathode materials.14–17 These desirable properties are apparently attributed to the solution structure of HCEs, where there exist almost no free solvent molecules, and the parasitic side reactions of solvents are thereby greatly reduced. Due to the lack of solvent molecules in HCEs, anions have to enter into the solvation shell of Li+, in order to meet the Li+ coordination number of 4–6, to form an ion–solvent-coordinated (ISC) structure.18 Several studies have shown that the unique ISC structure of HCEs leads to the shift of the lowest unoccupied molecular orbital (LUMO) from solvent to salt, which makes anions preferentially reduced or decomposed to produce a robust anion-derived SEI.14,19 In recent years, the anion-derived SEI structure has been regarded as the “holy grail” of electrolyte chemistry for understanding the interfacial stability and compatibility of HCEs. However, recent studies have showed that some HCEs containing non-film-forming salts and solvents can still achieve excellent reversible Li+ insertion reactions.20 Therefore, an intrinsic origin for the interfacial stability of HCEs still remains unrevealed. In our previous studies on HCEs or HMREs, their interfacial stability was found to depend predominately on the molar ratio (MR) of salt to solvent rather than the molar concentration.2,21,22 Thus, the HMREs instead of the HCEs in the following study could more clearly describe the nature of electrolyte stability.In this work, we reveal the correlation between the solvation microstructures and the LUMO energy levels of typical ISC structures in the electrolytes at various MRs with non-film-forming lithium salt (LiClO4) and organic carbonate solvents (PC, DMC, EMC and DEC) by ab initio molecular dynamics (AIMD) simulations and density functional theory (DFT) calculations. The choice of non-film-forming lithium salt and solvent in this study was aimed to exclude the contribution of the formation of the SEI film to the interfacial stability of the electrolytes. It is found from this study that the LUMO energy level of the ISC structure formed at a low MR is lower than that of pure solvent. With the increase of the MR, anions gradually enter into the first solvation shell of Li+ to form the anion-induced ISC (AI-ISC) structure, resulting in the increase of the LUMO energy level that enhances the reduction stability of the electrolyte. Also, it is revealed that the LUMO levels of ISC structures at different MRs are always situated at the coordinated solvent molecules, i.e., the strong reduction stability of HMREs is dominated by the modulation of solvent molecules rather than only the formation of the anion-derived SEI. Such a theoretical insight is further unequivocally evidenced by chemical compatibility experiments in this work. These findings reveal the origin of the greatly improved interfacial stability of HMREs and provide a mechanistic insight into the rational design of stable electrolytes for new generation alkali or alkaline metal based batteries.To investigate the specific ISC microstructures of the electrolytes with different MRs, AIMD simulations were first performed (see computational details in the ESI†). Taking non-film-forming DEC solvent as an example, three types of electrolytes with MRs of LiClO4 to DEC = 1 : 10, 1 : 5 and 1 : 2 are considered (Table S1†). After long-time AIMD simulation, the representative images of the equilibrium structures are shown in Fig. 1a–c. To characterize the solution structures, the radial distribution function g(r) of the electrolyte with different MRs is analyzed (Fig. 1e–g), and the changes in the Li+ coordination number with the O atoms of solvents and anions are listed in Fig. 1d. In addition, it should be noted that the total coordination number of Li+ always remains around 4, which implies that the stable tetragonal solvation shell structure of Li+ does not change in the different MR electrolytes; meanwhile, both the coordination numbers of Li+ contributed by the solvent and anion change oppositely. This phenomenon can be corroborated experimentally through infrared spectroscopy (IR) because the C O bond of the carbonate group has a strong IR absorption in the carbonyl region (1650–1850 cm−1) and its IR peak position shifts sensitively with its coordination environment. As shown in Fig. 1h, the IR band of carbonyl groups in pure DEC is located at ∼1741 cm−1, which is shifted to ∼1710 cm−1 in a LiClO4/DEC (MR = 1 : 10) electrolyte due to the coordination of the O atom in C O with Li+. With the increase of the MR of Li+/DEC, its IR peak at ∼1741 cm−1 gradually disappears, reflecting a gradual decrease in the number of free DEC molecules. In addition, the IR band of free ClO4− in a LiClO4/DEC (MR = 1 : 10) electrolyte is located at ∼931 cm−1, which is shifted to ∼942 cm−1 in the 1 : 2 LiClO4/DEC electrolyte due to the ionic association of Li+ and ClO4− (Fig. S1†). Combining AIMD simulations and IR experiments, it can be concluded that with the increase of the MR of the electrolyte, the anions gradually enter into the solvation shell of Li+, which modulates the chemical stability of the electrolyte.Open in a separate windowFig. 1Snapshots of typical equilibrium trajectories from DFT-MD simulations: (a) 1 : 10 LiClO4/DEC solution (2-LiClO4/20-DEC), (b) 1 : 5 LiClO4/DEC solution (3-LiClO4/15-DEC) and (c) 1 : 2 LiClO4/DEC solution (7-LiClO4/14-DEC). (d) Typical ISC structure extracted from DFT-MD. (e–g) Radial distribution function of lithium–oxygen interaction (short dashed lines) and relationship between the coordination number and bond distances (full lines). (h) FTIR spectra of the carbonyl group in LiClO4/DEC solution. Atom color: H, white; Li, purple; C, cyan; O, red; Cl, green.Coordination numbers (n(r)) of atom pairs of Li–O(DEC) and Li–O (ClO4−) (cut-off length of r = 2.5 Å)
Open in a separate windowTo further understand how the coordination of anions with Li+ can modulate the reduction stability of the electrolyte, DFT calculations were performed to evaluate the lowest unoccupied molecular orbital (LUMO) of the ISC structures in electrolytes with different MRs. The optimized configuration of DEC molecules and associated ISC structures are shown in Fig. S2.† Table S2† gives the calculated reaction energies for several different modes. It is found that the formation of all ISC structures is strongly favourable and enthalpy driven. The corresponding LUMO and energy levels of ISC structures are shown in Fig. 2. Firstly, our theoretical result clearly demonstrates that with the increase of the MR, the LUMOs of all ISC structures are invariably located on DEC molecules but have never shifted from the solvent to the salt as described in previous reports.14,19 This suggests that the reductive decomposition of the anion (ClO4−) won''t easily occur at low potentials. The discrepancy between this study and previous reports is mainly because we deliberately chose reduction-tolerant and non-film-forming LiClO4 as the electrolyte salt to avoid the influence of stable SEI film formation on the electrolyte stability, whereas the use of film-forming LiFSI or LiPF6 may contain the contribution of the SEI for interfacial stabilization, as shown in previous reports. Secondly, our results reveal that the change of the LUMO energy level of ISC structures appears to be a “V-shaped” profile with the increase of the MR, as shown in Fig. 2. At a low MR, the LUMO of [Li(DEC)4]+ is much lower than that of pure DEC molecules, owing to the coordination with cations to decrease the reduction stability of DEC, which is in line with Zhang''s results.23,24 Nevertheless, when the anions gradually enter into the first solvation shell of Li+ with the increase of the MR, the LUMO of the ISC structure notably rise up to a much higher level than that of pure DEC molecules, indicating that introducing anions into the ISC structure to coordinate with Li+ can increase the LUMO located on solvents and thereby intensify the reduction stability of the electrolyte. In addition, we have analyzed the projected density of states (PDOS) averaged over the AIMD trajectories for electrolytes with different MRs (Fig. S3†). It is found that in LiClO4/DEC electrolytes with any MR, the DEC molecules coordinated with Li+ dominate the LUMO, which agrees well with our above DFT results and highlights that the anions (ClO4−) will not be reduced to form the SEI film in this system. Thus, the reduction stability of HRMEs is controlled by the position of the LUMO of coordinated solvent molecules, which is shifted by the participation of anions into the first solvation shell of Li+ to form the anion-induced ISC structure. This mechanism is markedly different from the traditional and general understanding, in which the high reduction stability of HRMEs is attributed to the formation of the anion-derived SEI film. In other words, the interfacial stability of the electrolyte can be adjusted through the modulation of the AI-ISC structure and not necessarily the anion-derived SEI film.Open in a separate windowFig. 2The visual LUMOs and energy level of ISC structures. The hydrogen, lithium, carbon, oxygen, and chlorine atoms are marked with white, purple, gray, red, and green, respectively. The light green and light blue regions of LUMOs represent the positive and negative parts of the orbitals, respectively (isovalue = 0.02).In order to verify the above theoretical analysis, we performed a series of chemical stability experiments of the electrolytes. The change trend of the reduction stability of electrolytes with various MRs can be visually observed by immersing Li pieces in the LiClO4/DEC electrolyte. Fig. 3a shows the photos of these electrolytes and lithium pieces before (as-prepared) and after storage for 5 h, 12 h and 24 h, respectively. It is clear that the LiClO4/DEC electrolyte with a MR of 1 : 10 and 1 : 5 turned yellow after only 5 hours. However, in pure DEC and LiClO4/DEC with a MR of 1 : 2, there is still no obvious color change for lithium foil and solution even after 24 h. Such an experimental phenomenon indicates that the reduction stability of the electrolyte decreases distinctly from the pure solvent to the LiClO4/DEC electrolyte with a low MR (1 : 10 and 1 : 5) due to the presence of the anion-free ISC structure that decreases the LUMO (Fig. 2). In addition, we can note that the electrolyte with a MR of 1 : 5 has a stronger reactivity with lithium piece than the electrolyte with a MR of 1 : 10, mainly because there exist more anion-free ISC structures in the 1 : 5 MR electrolyte (Fig. 3e). As the MR increases to 1 : 2, there is an increased number of ISC structures containing more anions to form the AI-ISC structure (Fig. 3f), which promotes the elevation of the LUMO so as to increase the reduction tolerance. To further confirm this mechanism, we also investigated the interfacial stability of the LiClO4/DEC electrolyte on a graphite (Gr) electrode at different MRs of LiClO4/DEC. As shown in Fig. 3b, the reversible capacity of the Gr electrode decreases from 130 mA h g−1 to 105 mA h g−1 and increases to 260 mA h g−1 with the increase of the MR of LiClO4/DEC from 1 : 10 to 1 : 5 and 1 : 2 in the electrolyte, consistent with the trend in Fig. 3a. Also, the Gr electrode demonstrates similar three-staged Li+ insertion reactions in the LiClO4/DEC (1 : 2) electrolyte as in conventional 1 M LiPF6 EC–EMC electrolyte (Fig. 3c), indicating that the interfacial compatibility of the electrolyte with Gr can also be achieved by introducing an AI-ISC structure (Fig. 3f). Encouragingly, such experimental phenomena are completely in line with our DFT calculations and AIMD simulations (Fig. 2), in which the LUMO energy level of the ISC structure formed in the electrolyte with a low MR (<1 : 4) is lower than that of pure solvent, while with the increase of the MR, the AI-ISC structure elevates the LUMO energy level of the electrolyte. It is worth mentioning that for the electrolytes with reduction-stable anions (e.g. ClO4−), their LUMO is still located on the coordinated solvent molecules even with a high MR (>1 : 4), demonstrating that the increase of reduction stability is controlled by the coordinated solvent molecules in ISC structures, rather than the formation of the anion-derived SEI film.Open in a separate windowFig. 3(a) Reactivity of lithium metal foil and LiClO4/DEC solution at room temperature. (b) Charge–discharge curves of the Gr anode in LiClO4/DEC electrolytes with different MRs. (c) Magnified discharge curves of the Gr anode in 1 : 2 MR LiClO4/DEC and traditional EC-based (1 M LiPF6 EC–EMC) electrolytes. Schematics of LiClO4/DEC electrolyte with a MR of (d) 1 : 10, (e) 1 : 5 and (f) 1 : 2.In order to further confirm the universality of the above conclusion, DFT calculations were also carried out for three other electrolyte systems, which are composed of non-film-forming PC, DMC or EMC solvents and non-film-forming LiClO4 salt. The optimized structures of pure solvent molecules and ISC structures with various MRs are shown in Fig. S2,† and their corresponding LUMO levels are shown in Fig. 4. It can be clearly seen that the LUMO levels are still situated at the solvent molecules for all pure solvents and ISC structures. In addition, as the MR increases, the LUMO energy levels change to a V-shape, which are in line with the case of LiClO4/DEC electrolyte and confirms the rationality and correctness of our proposed mechanism.Open in a separate windowFig. 4The visual LUMOs and energy level of solvents and ISCs. The hydrogen, lithium, carbon, oxygen, and chlorine atoms are marked with white, purple, gray, red, and green, respectively. Besides, the light green and light blue regions of LUMOs represent the positive and negative parts of the orbitals, respectively (isovalue = 0.02).In conclusion, by combining AIMD simulations and DFT calculations with chemical stability experiments, we establish a close correlation between ISC structures and reduction stability of commonly used carbonate electrolytes with different MRs. The LUMO energy level of the anion-free ISC structure formed in the electrolyte with a low MR (<1 : 4) is lower than that of pure solvent, suggesting a decreased interfacial stability of less concentrated electrolytes. With the increase of the MR, anions gradually coordinated with Li+ to form AI-ISC structures, leading to the increase of the LUMO energy level of ISC structures and therefore an enhanced reduction stability. The change of the LUMO energy level with ISC structures appears as a “V-shaped” profile with the increase of the MR. It is worth noting that at any MR, the LUMO is always located on the coordinated solvent molecules without shifting from the solvent towards the salt (only stable anion). Consequently, the underlying origin of the enhanced reduction stability for electrolytes with higher MRs is revealed to arise from the entry of anions into the first solvation shell of Li+ for the formation of the AI-ISC structure. Our findings provide a novel and molecular level understanding of the stability mechanism of HMREs (or HCEs) and a new insight into the rational design of highly stable and multifunctional electrolytes for new generation rechargeable batteries. 相似文献
Molar ratio | Li–O(DEC) | Li–O(ClO4−) | Total |
---|---|---|---|
1 : 10 | 3.1 | 1.0 | 4.1 |
1 : 5 | 2.7 | 1.3 | 4.0 |
1 : 2 | 1.6 | 2.4 | 4.0 |
154.
纳米零价铁直接还原降解有机污染物运行长效性差,且不能矿化有机污染物.利用纳米零价铁还原活化分子氧生成活性氧物种可以氧化甚至矿化有机污染物.在最近的研究中,作者提出了纳米零价铁活化分子氧的双途径机理,即铁核电子转移到氧化铁壳表面的双电子还原活化分子氧途径和氧化铁表面结合态亚铁离子的单电子还原活化分子氧途径,阐释了纳米零价铁核壳结构依赖的分子氧活化降解有机污染物性能机制及性能增强策略.证实在纳米零价铁活化分子氧体系添加少量亚铁离子能在零价铁表面形成更多的结合态亚铁,显著增强纳米铁表界面活性氧物种生成量;同时,在纳米零价铁活化分子氧体系中引入少量有机或无机配体亦可提高活性氧物种产生效率,从而增强有机污染物降解性能.最后讨论了典型环境因素如pH值、共存离子、天然有机物等影响纳米零价铁活化分子氧降解有机污染物性能的规律. 相似文献
155.
Di Liu Jia Zhao Youchao Kong Haoqiang Ai Haoyun Bai Chon Chio Leong Kin Ho Lo Shuangpeng Wang Weng Fai Ip Sen Lin Hui Pan 《Chemphyschem》2023,24(11):e202200937
Carbon neutrality has drawn increasing attention for realizing the carbon cyclization and reducing the greenhouse effect. Although the C1 products, such as CO, can be achieved with a high Faraday efficiency, the targeted production of C2 fuels as well as the mechanism have not been systematically investigated. In this work, we carry out a first-principles study to screen dual-atom catalysts (DACs) for producing C2 fuels through the electrocatalytic carbon monoxide reduction reaction (e-CORR). We find that methanol, ethanol and ethylene can be produced on both DAC−Co and DAC−Cu, while acetate can be achieved on DAC−Cu only. Importantly, methanol and ethylene are preferred on DAC−Co, while acetate and ethylene on DAC−Cu. Furthermore, we show that the explicit solvent can enhance the adsorption and influence the protonation steps, which subsequently affects the protonation and dimerization behavior as well as the performance and selectivity of e-CORR on DACs. We further demonstrate that the C−C coupling is easy to be formed and stabilized if the Integrated Crystal Orbital Hamilton Population (ICOHP) is low because of the low energy barrier. Our findings provide not only guidance on the design of novel catalysts for e-CORR, but an insightful understanding on the reduction mechanism. 相似文献
156.
Meso-四(对-磺基苯基)卟啉光度法测定螺旋藻中的痕量锌 总被引:6,自引:0,他引:6
在pH=4.5的乙酸-乙酸钠缓冲介质中,锌和meso-四-(对磺基苯基)卟啉生成1:l的黄色配合物,λmax=421nm,ε=4.34×105L·mol-1·cm-1。该法可不经分离直接测定螺旋藻中的锌,结果满意。 相似文献
157.
158.
研究非线性项的形式为|u|~pu,p>0的2m阶非线性Schrdinger方程的自相似解.利用scaling和压缩映象原理证明了当初值满足一定条件时Cauchy问题解的整体存在性,据此给出了当初值的形式为U(x/(|x|))|x|~(-(2m)/p)时,自相似解的存在性. 相似文献
159.
本文基于严平稳强混合数据和带确定性趋势的强混合数据序列,推广了文献[20]中提出的半参数平滑转换回归模型。对含于平滑转换函数中的未知光滑有界函数应用级数估计方法,并基于非线性最小二乘估计和级数估计理论证明了模型参数估计量的相合性和渐近正态性等大样本性质,简要讨论了其协方差矩阵的估计以及假设检验问题。最后,应用该模型重新研究了我国年度通货膨胀率的平滑转换结构。 相似文献
160.
We prove that the regularity of a vertex operator superalgebra can be reduced to the semisimplicity of the category of its weak modules.Moreover,the rationality can be replaced by requiring that each 1/2Z+-graded module is a direct sum of irreducible weak modules. 相似文献