首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5526篇
  免费   248篇
  国内免费   52篇
化学   3909篇
晶体学   70篇
力学   251篇
综合类   1篇
数学   606篇
物理学   989篇
  2024年   12篇
  2023年   52篇
  2022年   434篇
  2021年   324篇
  2020年   239篇
  2019年   239篇
  2018年   206篇
  2017年   168篇
  2016年   274篇
  2015年   152篇
  2014年   208篇
  2013年   454篇
  2012年   324篇
  2011年   323篇
  2010年   202篇
  2009年   173篇
  2008年   217篇
  2007年   226篇
  2006年   184篇
  2005年   138篇
  2004年   143篇
  2003年   123篇
  2002年   139篇
  2001年   63篇
  2000年   45篇
  1999年   39篇
  1998年   35篇
  1997年   25篇
  1996年   36篇
  1995年   34篇
  1994年   37篇
  1993年   29篇
  1992年   35篇
  1991年   36篇
  1990年   28篇
  1989年   47篇
  1988年   40篇
  1987年   28篇
  1986年   31篇
  1985年   28篇
  1984年   37篇
  1983年   27篇
  1982年   18篇
  1981年   20篇
  1980年   22篇
  1979年   18篇
  1978年   23篇
  1977年   18篇
  1976年   14篇
  1973年   11篇
排序方式: 共有5826条查询结果,搜索用时 15 毫秒
101.
Acetylcholinesterase (AChE) inhibitors and calcium channel blockers are considered effective therapies for Alzheimer’s disease. AChE plays an essential role in the nervous system by catalyzing the hydrolysis of the neurotransmitter acetylcholine. In this study, the inhibition of the enzyme AChE by Sarcorucinine-D, a pregnane type steroidal alkaloid, was investigated with experimental enzyme kinetics and molecular dynamics (MD) simulation techniques. Kinetics studies showed that Sarcorucinine-D inhibits two cholinesterases—AChE and butyrylcholinesterase (BChE)—noncompetitively, with Ki values of 103.3 and 4.66 µM, respectively. In silico ligand-protein docking and MD simulation studies conducted on AChE predicted that Sarcorucinine-D interacted via hydrophobic interactions and hydrogen bonds with the residues of the active-site gorge of AChE. Sarcorucinine-D was able to relax contractility concentration-dependently in the intestinal smooth muscles of jejunum obtained from rabbits. Not only was the spontaneous spasmogenicity inhibited, but it also suppressed K+-mediated spasmogenicity, indicating an effect via the inhibition of voltage-dependent Ca2+ channels. Sarcorucinine-D could be considered a potential lead molecule based on its properties as a noncompetitive AChE inhibitor and a Ca2+ channel blocker.  相似文献   
102.
In this review, we focus on some interesting and recent examples of various applications of organic azides such as their intermolecular or intramolecular, under thermal, catalyzed, or noncatalyzed reaction conditions. The aforementioned reactions in the aim to prepare basic five-, six-, organometallic heterocyclic-membered systems and/or their fused analogs. This review article also provides a report on the developed methods describing the synthesis of various heterocycles from organic azides, especially those reported in recent papers (till 2020). At the outset, this review groups the synthetic methods of organic azides into different categories. Secondly, the review deals with the functionality of the azido group in chemical reactions. This is followed by a major section on the following: (1) the synthetic tools of various heterocycles from the corresponding organic azides by one-pot domino reaction; (2) the utility of the chosen catalysts in the chemoselectivity favoring C−H and C-N bonds; (3) one-pot procedures (i.e., Ugi four-component reaction); (4) nucleophilic addition, such as Aza-Michael addition; (5) cycloaddition reactions, such as [3+2] cycloaddition; (6) mixed addition/cyclization/oxygen; and (7) insertion reaction of C-H amination. The review also includes the synthetic procedures of fused heterocycles, such as quinazoline derivatives and organometal heterocycles (i.e., phosphorus-, boron- and aluminum-containing heterocycles). Due to many references that have dealt with the reactions of azides in heterocyclic synthesis (currently more than 32,000), we selected according to generality and timeliness. This is considered a recent review that focuses on selected interesting examples of various heterocycles from the mechanistic aspects of organic azides.  相似文献   
103.
Plant polyphenol-based coordination polymers(CPs) with ultra-small particle size and tailorable compositions are highly desired in biomedical applicatio ns,but their synthesis is still challenging due to the sophisticated coordination assembly process and unavoidable self-oxidation polymerization of polyphenol. He rein,a general ligand covalent-modification mediated coordination assembly strategy is proposed for the synthesis of water-dispersible CPs with tunable metal species(e.g., Gd,Cu,Ni,Zn,Fe)and ultra-small diameter(8.6-37.8 nm) using nontoxic plant polyphenol(e.g..tannic acid,gallic acid) as a polymerizable ligand.Polyphenol molecules react with formaldehyde firstly,which can effectively retard the oxidation induced self-polymerization of polyphenol and lead to the formation of metal ions containing CPs colloidal nanoparticles.These ultrafine nanoparticles with stably chelated metal io ns are highly water dispersible and thus advantageous for bioimaging.As an example,ultra-small Gd contained CPs exhibit higher longitudinal relaxivity(r_1=25.5 L mmol ~1 s ~1) value with low r_2/r_1(1.19) than clinically used Magnevist(Gd-DTPA,r_1=3.7 L mmol ~1 s ~1).Due to the enhanced permeability and retention effect,they can be further used as a positive contrast agent for T_1-weighted MR imaging of tumour.  相似文献   
104.
With an ever-growing emphasis on sustainable synthesis, aerobic C–H activation (the use of oxygen in air to activate C–H bonds) represents a highly attractive conduit for the development of novel synthetic methodologies. Herein, we report the air mediated functionalisation of various saturated heterocycles and ethers via aerobically generated radical intermediates to form new C–C bonds using acetylenic and vinyl triflones as radical acceptors. This enables access to a variety of acetylenic and vinyl substituted saturated heterocycles that are rich in synthetic value. Mechanistic studies and control reactions support an aerobic radical-based C–H activation mechanism.

Herein we disclose a novel method for the aerobic C–H activation of ethereal-based heterocycles to generate various α-functionalised building blocks.  相似文献   
105.
The microscale thermophoresis (MST) technique was utilized to investigate lactoferrin–drug interaction with the iron chelator, deferiprone, using label-free system. MST depends on the intrinsic fluorescence of one interacting partner. The results indicated a significant interaction between lactoferrin and deferiprone. The estimated binding constant for the lactoferrin–deferiprone interaction was 8.9 × 10−6 ± 1.6, SD, which is to be reported for the first time. Such significant binding between lactoferrin and deferiprone may indicate the potentiation of the drug secretion into a lactating mother’s milk. The technique showed a fast and simple approach to study protein–drug interaction while avoiding complicated labeling procedures. Moreover, the binding behavior of deferiprone within the binding sites of lactoferrin was investigated through molecular docking which reflected that deferiprone mediates strong hydrogen bonding with ARG121 and ASP297 in pocket 1 and forms H-bond and ionic interaction with ASN640 and ASP395, respectively, in pocket 2 of lactoferrin. Meanwhile, iron ions provide ionic interaction with deferiprone in both of the pockets. The molecular dynamic simulation further confirmed that the binding of deferiprone with lactoferrin brings conformational changes in lactoferrin that is more energetically stable. It also confirmed that deferiprone causes positive correlation motion in the interacting residues of both pockets, with strong negative correlation motion in the loop regions, and thus changes the dynamics of lactoferrin. The MM-GBSA based binding free energy calculation revealed that deferiprone exhibits ∆G TOTAL of −63,163 kcal/mol in pocket 1 and −63,073 kcal/mol in pocket 2 with complex receptor–ligand difference in pocket 1 and pocket 2 of −117.38 kcal/mol and −111.54 kcal/mol, respectively, which in turn suggests that deferiprone binds more strongly in the pocket 1. The free energy landscape of the lactoferrin–deferiprone complex also showed that this complex remains in a high energy state that confirms the strong binding of deferiprone with the lactoferrin. The current research concluded that iron-chelating drugs (deferiprone) can be transported from the mother to the infant in the milk because of the strong attachment with the lactoferrin active pockets.  相似文献   
106.
Various chitosan (CS)-based nanoparticles (CS-NPs) of ciprofloxacin hydrochloride (CHCl) have been investigated for therapeutic delivery and to enhance antimicrobial efficacy. However, the Box–Behnken design (BBD)-supported statistical optimization of NPs of CHCl has not been performed in the literature. As a result, the goal of this study was to look into the key interactions and quadratic impacts of formulation variables on the performance of CHCl-CS-NPs in a systematic way. To optimize CHCl-loaded CS-NPs generated by the ionic gelation process, the response surface methodology (RSM) was used. The BBD was used with three factors on three levels and three replicas at the central point. Tripolyphosphate, CS concentrations, and ultrasonication energy were chosen as independent variables after preliminary screening. Particle size (PS), polydispersity index (PDI), zeta potential (ZP), encapsulation efficiency (EE), and in vitro release were the dependent factors (responses). Prepared NPs were found in the PS range of 198–304 nm with a ZP of 27–42 mV. EE and drug release were in the range of 23–45% and 36–61%, respectively. All of the responses were optimized at the same time using a desirability function based on Design Expert® modeling and a desirability factor of 95%. The minimum inhibitory concentration (MIC) of the improved formula against two bacterial strains, Pseudomonas aeruginosa and Staphylococcus aureus, was determined. The MIC of the optimized NPs was found to be decreased 4-fold compared with pure CHCl. The predicted and observed values for the optimized formulation were nearly identical. The BBD aided in a better understanding of the intrinsic relationship between formulation variables and responses, as well as the optimization of CHCl-loaded CS-NPs in a time- and labor-efficient manner.  相似文献   
107.
Oxidative stress (OS) and c-Jun N-terminal kinase (JNK) are both key indicators implicated in neuro-inflammatory signalling pathways and their respective neurodegenerative diseases. Drugs targeting these factors can be considered as suitable candidates for treatment of neuronal dysfunction and memory impairment. The present study encompasses beneficial effects of a naturally occurring triterpenoid, friedelin, against scopolamine-induced oxidative stress and neurodegenerative pathologies in mice models. The treated animals were subjected to behavioural tests i.e., Y-maze and Morris water maze (MWM) for memory dysfunction. The underlying mechanism was determined via western blotting, antioxidant enzymes and lipid profile analyses. Molecular docking studies were carried out to predict the binding modes of friedelin in the binding pocket of p-JNK protein. The results reveal that scopolamine caused oxidative stress by (1) inhibiting catalase (CAT), peroxidase enzyme (POD), superoxide dismutase (SOD), and reduced glutathione enzyme (GSH); (2) the up-regulation of thiobarbituric acid reactive substances (TBARS) in mice brain; and (3) affecting the neuronal synapse (both pre- and post-synapse) followed by associated memory dysfunction. In contrast, friedelin administration not only abolished scopolamine-induced oxidative stress, glial cell activation, and neuro-inflammation but also inhibited p-JNK and NF-κB and their downstream signaling molecules. Moreover, friedelin administration improved neuronal synapse and reversed scopolamine-induced memory impairment accompanied by the inhibition of β-secretase enzyme (BACE-1) to halt amyloidogenic pathways of amyloid-β production. In summary, all of the results show that friedelin is a potent naturally isolated neuro-therapeutic agent to reverse scopolamine-induced neuropathology, which is characteristic of Alzheimer’s disease.  相似文献   
108.
A nicotinamide-based derivative was designed as an antiproliferative VEGFR-2 inhibitor with the key pharmacophoric features needed to interact with the VEGFR-2 catalytic pocket. The ability of the designed congener ((E)-N-(4-(1-(2-(4-benzamidobenzoyl)hydrazono)ethyl)phenyl)nicotinamide), compound 10, to bind with the VEGFR-2 enzyme was demonstrated by molecular docking studies. Furthermore, six various MD simulations studies established the excellent binding of compound 10 with VEGFR-2 over 100 ns, exhibiting optimum dynamics. MM-GBSA confirmed the proper binding with a total exact binding energy of −38.36 Kcal/Mol. MM-GBSA studies also revealed the crucial amino acids in the binding through the free binding energy decomposition and declared the interactions variation of compound 10 inside VEGFR-2 via the Protein–Ligand Interaction Profiler (PLIP). Being new, its molecular structure was optimized by DFT. The DFT studies also confirmed the binding mode of compound 10 with the VEGFR-2. ADMET (in silico) profiling indicated the examined compound’s acceptable range of drug-likeness. The designed compound was synthesized through the condensation of N-(4-(hydrazinecarbonyl)phenyl)benzamide with N-(4-acetylphenyl)nicotinamide, where the carbonyl group has been replaced by an imine group. The in-vitro studies were consonant with the obtained in silico results as compound 10 prohibited VEGFR-2 with an IC50 value of 51 nM. Compound 10 also showed antiproliferative effects against MCF-7 and HCT 116 cancer cell lines with IC50 values of 8.25 and 6.48 μM, revealing magnificent selectivity indexes of 12.89 and 16.41, respectively.  相似文献   
109.
Erosive beverages cause dissolution of natural teeth and intra-oral restorations, resulting in surface characteristic changes, particularly roughness and degradation. The purpose of this study was to evaluate the surface roughness and topography of a dental ceramic following immersion in locally available erosive solutions. A total of 160 disc specimens of a nano-fluorapatite type ceramic (12 mm diameter and 2 mm thickness) were fabricated and equally distributed into two groups (n = 80) and then evenly distributed among the following five testing groups (n = 16): lemon juice, citrate buffer solution, 4% acetic acid, soft cola drink, and distilled water which served as a control. The surface roughness (Ra) and topography were evaluated using a profilometer and scanning electron microscope at baseline, 24 h, 96 h, and 168 h respectively. Data were analyzed using ANOVA and Tukey’s multiple comparisons (p ≤ 0.05). Surface changes were observed upon exposure to all acidic beverages except distilled water. Amongst all immersion media, 4% acetic acid produced the most severe surface roughness across all time periods (i.e., baseline, 24 h, 96 h, and 168 h). A statistically significant difference in the surface roughness values between all immersion media and across all four time intervals was observed. Erosive agents had a negative effect on the surface roughness and topography of the tested ceramic. The surface roughness increased with increased storage time intervals.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号