首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   590篇
  免费   25篇
  国内免费   15篇
化学   365篇
力学   55篇
数学   88篇
物理学   122篇
  2024年   3篇
  2023年   1篇
  2022年   9篇
  2021年   32篇
  2020年   26篇
  2019年   30篇
  2018年   29篇
  2017年   37篇
  2016年   39篇
  2015年   22篇
  2014年   44篇
  2013年   75篇
  2012年   63篇
  2011年   53篇
  2010年   42篇
  2009年   27篇
  2008年   15篇
  2007年   23篇
  2006年   10篇
  2005年   6篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1993年   2篇
  1991年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   3篇
  1979年   2篇
  1977年   5篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1972年   1篇
排序方式: 共有630条查询结果,搜索用时 15 毫秒
621.
Analytical solution of the Dirac equation for the modified Pöschl–Teller potential and trigonometric Scarf II non-central potential for spin symmetry is studied using asymptotic iteration method. One-dimensional Dirac equation consisting of the radial and angular parts can be obtained by the separation of variables. By using asymptotic iteration method, the relativistic energy equation and orbital quantum number (l) equation can be obtained, where both are interrelated. Relativistic energy equation is calculated numerically by the Matlab software. The increase in the radial quantum number n r causes a decrease in the energy value, and the wave functions of the radial and the angular parts are expressed in terms of hypergeometric functions. Some thermodynamical properties of the system can be determined by reducing the relativistic energy equation to the non-relativistic energy equation. Thermodynamical properties such as vibrational partition function, vibrational specific heat function and vibrational mean energy function are expressed in terms of error function.  相似文献   
622.
We proposed a new model for controlling the optical bistability(OB) and optical multistability(OM) in a defect slab doped with four-level GaAs/AlGaAs multiple quantum wells with 15 periods of 17.5 nm GaAs wells and 15-nm Al_(0.3)Ga_(0.7)As barriers. The effects of biexciton energy renormalization, exciton spin relaxation, and thickness of the slab on the OB and OM properties of the defect slab were theoretically investigated. We found that the transition from OB to OM or vice versa is possible by adjusting the controllable parameters in a lab. Moreover, the transmission, reflection, and absorption properties of the weak probe light through the slab were also discussed in detail.  相似文献   
623.
An energy‐dispersive system is described for elemental mapping by X‐ray fluorescence spectrometry. The present study describes the design of an X‐ray fluorescence spectrometer and presents its performance in elemental mapping applications. The spectrometer is based on a new ring‐shaped collimator with a pinhole in the center of it and a ring‐shaped Am‐241 isotope mounted in the collimator as a source for excitation of X‐ray fluorescence. The photons were detected by high‐resolution Si (Li) detector coupled to a multi‐channel analyser and cooled by liquid nitrogen. In this study, we used two samples; one of them was made from pure elemental powders, and the second one was a piece of a stone and three types of maps were plotted. In the maps type one, the areas of the elements were shown with a single color. These maps only show the location of the elements in the sample. In the maps type two, the area of each element was shown with different colors because of the count (intensity) related to the area. In the third type of the maps for each element, depending on the elements' position on the sample, the counts were plotted in three dimensions. The areas with higher intensity have greater height, and areas with lower intensity have lower altitude. These two last types of maps provide information about the homogeneity or heterogeneity of the elemental distribution in the samples. The spectrometer can perform non‐destructive analyses of samples and objects in the air. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   
624.
In this letter, phase control of the Goos-Hänchen shifts of the reflected and transmitted probe light beams through a cavity containing four-level InGaN/GaN quantum dot nanostructure is theoretically discussed. In order to achieve the wave functions and their corresponding energy levels of the mentioned quantum dot nanostructure, Schrödinger and Poisson equations must be solved in a self consistent manner for carriers (here electron) in quantum dot. It is found that the coupling field, the pumping field as well as the cycling field can enhance the GH shifts of the reflected and transmitted probe beams. The effect of relative phase and the detuning of the probe light on the GH shifts of the reflected and transmitted probe beams are also investigated. We find that the GH shifts can be switched between the large positive and negative values by adjusting the controllable parameters.  相似文献   
625.
A comprehensive model is presented to study quantum well tapered lasers and quantum well stripe lasers with profiled reflectivity output facets and to obtain lateral stability in high power semiconductor laser. Simulation of semiconductor lasers is performed by numerically solving space-dependent coupled partial differential equations for the complex optical forward and backward waves, carrier density distribution and temperature distribution. The coupled equations are solved by finite difference beam propagation method. The effect of nonlinear parameters like Kerr and linewidth enhancement factors, and precise dependence of linewidth enhancement factor and gain factor on the carrier density and temperature are considered in this paper. We use modal reflector in stripe lasers to confine the lateral mode to the stripe centre and provide the stable operation. We also use unpumped window to reduce the facet temperature and improve the catastrophic optical mirror damage level of tapered lasers.  相似文献   
626.
In order to study the mass generation of the vector fields in the framework of a conformal invariant gravitational model, the Weyl–Dirac theory is considered. The mass of the Weyl’s meson fields plays a principal role in this theory, it connects basically the conformal and gauge symmetries. We estimate this mass by using the large-scale characteristics of the observed universe. To do this we firstly specify a preferred conformal frame as a cosmological frame, then in this frame, we introduce an exact possible solution of the theory. We also study the dynamical effect of the massive vector meson fields on the trajectories of an elementary particle. We show that a local change of the cosmological frame leads to a Hamilton–Jacobi equation describing a particle with an adjustable mass. The dynamical effect of the massive vector meson field presents itself in the form of a correction term for the mass of the particle.  相似文献   
627.
Single-electron transistors (SETs) are nano devices which can be used in low-power electronic systems. They operate based on coulomb blockade effect. This phenomenon controls single-electron tunneling and it switches the current in SET. On the other hand, co-tunneling process increases leakage current, so it reduces main current and reliability of SET. Due to co-tunneling phenomenon, main characteristics of fullerene SET with multiple islands are modelled in this research. Its performance is compared with silicon SET and consequently, research result reports that fullerene SET has lower leakage current and higher reliability than silicon counterpart. Based on the presented model, lower co-tunneling current is achieved by selection of fullerene as SET island material which leads to smaller value of the leakage current. Moreover, island length and the number of islands can affect on co-tunneling and then they tune the current flow in SET.  相似文献   
628.
Gene expression analysis is considered to be extremely important in many different biological researches. DNA-based diagnostic test, which contributes to DNA identification, has higher specificity, cost, and speed than some biochemical and molecular methods. In this study, we try to use the novel nano technology approach with Multiplex RT-PCR and Gold nano particular probes (GNPs-probes) in order to get gene expression in Curcumas melons. We used Agrobacterium tumefactions for gene transfer and GUS reporter gene as a reporter. After cDNA synthesis, Multiplex PCR and Multiplex RT-PCR techniques were used. Finally, probes were designed for RNA of GUS and Actin genes, and then the analysis of the gene expression using the probes attached to GNPs was carried out and the color changes in the GNPs were applied. In the following, probes hybridization was checked with DNA between 400 to 700 nm wavelengths and the highest rate was observed in the 550 to 650 nm. The results show that the simultaneous use of GNP-attached detectors and Multiplex RT-PCRcan reduce time and costmore considerably than somelaboratory methods for gene expiration investigation. Additionally, it can be seen thatthere is an increase in sensitivity and specificity of our investigation. Based on our findings, this can bea novel study doneusingMultiplex RT-PCRand unmodified AuNPs for gene transfer and expression detection to plants. We can claim that this assay has a remarkable advantage including rapid, cost-effectiveness, specificity and accuracy to detect transfer and expression genes in plants. Also,we can use this technique from other gene expressionsin many different biology samples.  相似文献   
629.
In this paper, we discuss the transmission properties of weak probe laser field propagate through slab cavity with defect layer of carbon-nanotube quantum dot (CNT-QD) nanostructure. We show that due to spin-orbit coupling, the double electromagnetically induced transparency (EIT) windows appear and the giant Kerr nonlinearity of the intracavity medium can lead to manipulating of transmission coefficient of weak probe light. The thickness effect of defect layer medium has also been analyzed on transmission properties of probe laser field. Our proposed model may be useful for integrated photonics devices based on CNT-QD for applications in all-optical systems which require multiple EIT effect.  相似文献   
630.
The non-stationary random response of non-linear systems is considered. The technique of equivalent linearization is generalized for application to non-stationary non-linear random systems and several approximate methods of solution are presented. The example of a Duffing oscillator is studied in detail and its mean square response is evaluated and discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号