首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   5篇
  国内免费   2篇
化学   95篇
力学   2篇
数学   46篇
物理学   63篇
  2023年   2篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   10篇
  2011年   11篇
  2010年   9篇
  2009年   7篇
  2008年   14篇
  2007年   7篇
  2006年   17篇
  2005年   8篇
  2004年   12篇
  2003年   6篇
  2002年   7篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   4篇
  1993年   1篇
  1992年   1篇
  1991年   6篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   4篇
  1979年   1篇
  1978年   2篇
  1977年   3篇
  1976年   1篇
  1975年   3篇
  1974年   2篇
  1973年   4篇
  1970年   2篇
  1966年   1篇
  1965年   1篇
排序方式: 共有206条查询结果,搜索用时 15 毫秒
201.
Titanium oxide (TiO(2)) nanoparticles (NPs) in their two forms, anatase and rutile, were synthesized and deposited onto the surface of cotton fabrics by using ultrasonic irradiation. The structure and morphology of the nanoparticles were analyzed by using characterization methods such as XRD, TEM, STEM, and EDS. The antimicrobial activities of the TiO(2)-cotton composites were tested against Escherichia coli (gram-negative) and Staphylococcus aureus (gram-positive) strains, as well as against Candida albicans. Significant antimicrobial effect was observed, mainly against Staphylococcus aureus. In addition, the combination of visible light and TiO(2) NPs showed enhanced antimicrobial activity.  相似文献   
202.
Highly dispersed Pt nanoparticles were incorporated in CeO2 nanopowders by an ultrasound-assisted reduction procedure. The activity of the Pt/CeO2 catalysts was studied in the reaction of the ethyl acetate combustion, and complete conversion was achieved at low temperature. It was demonstrated that the higher dispersion of the CeO2 support, the better the performance of the Pt/CeO2 catalysts. The catalysts were characterized by XRD, TEM, HRTEM, EDX, BET, and XPS. The homogeneous incorporation of 2-4 nm Pt nanoparticles into the interparticle distance of the CeO2 nanopowders was demonstrated. The advantage of the sonochemical method for catalyst preparation, in comparison with the traditional incipient wetness impregnation, was explained as the result of the homogeneity and better dispersion of the active metal phase obtained by ultrasound irradiation.  相似文献   
203.
A simple, efficient, and novel method was developed for the direct preparation of hydrophilic, bamboo-shaped carbon nanotubes by the pyrolysis of ruthenium(III) acetylacetonate in a Swagelock cell is reported. The obtained product exhibits mostly bamboo-shaped, straight, periodic twisted, multiwalled carbon nanotubes possessing diameters of 50-80 nm and lengths of around 10 microm. The pyrolyzed product was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution TEM (HRTEM), Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy (XPS), micro-Raman, and cyclic voltammetric techniques. HRTEM studies showed that the walls of bamboo-shaped carbon nanotubes consisted of oblique grapheme planes with respect to the tube axis. The interlayer spacing between two graphitic layers was found to be 0.342 nm. XPS measurements have suggested that as-prepared carbon nanotubes consist the surface functional groups on the surface of carbon nanotubes. The electrochemical properties of synthesized carbon nanotubes have been evaluated. Thermogravimetric analysis (TGA), IR, and cyclic voltammetric studies showed the presence of oxygen functionalities. Raman studies revealed the presence of disorder in the graphitic carbon and the presence of exposed edge plane defects in the generated carbon nanotubes for influencing the surface behavior and electrochemical properties. The electrochemical behavior of electrodes made of bamboo-shaped carbon nanotubes served for an oxygen reduction reaction.  相似文献   
204.
Helical carbon nanofibers were synthesized by means of acetylene pyrolysis at 450 degrees C using Fe nanoparticles as catalyst. There is no need to modify the Fe nanoparticles by a chiral reagent. The carbon nanofibers generated are crystalline and symmetric, with the (110) plane of Fe particle being the mirror plane. There would be a change in the shape of the nanofibers if the temperature at the beginning or during the synthesis were altered. Compared to the helical carbon nanofibers reported elsewhere in the literature, our samples show higher magnetization.  相似文献   
205.
A novel sonoelectrochemical method for the size-controlled synthesis of spherical copper nanoparticles in an aqueous phase was developed. In this study, poly(N-vinylpyrrolidone) (PVP) was used as the stabilizer for the copper clusters. The copper nanoparticles were characterized by XRD, UV-vis, IR, DLS, TEM, and HRTEM. The PVP was found to greatly promote the formation rate of copper particles and to significantly reduce the copper deposition rate, thereby making monodispersed copper nanoparticles. We could control the particle size by adjusting various parameters such as current density, deposition, temperature, and sonic power, and improve the homogeneity of the copper particles. The results also showed that the transfer rate of PVP-stabilized copper clusters from the cathodic vicinity to the bulk solution played an important role in the preparation of the monodispersed nanoparticles.  相似文献   
206.
Organic osmotic solutes (compatible solutes) are accumulated within the cytoplasm of many microorganisms living in hypersaline environments to provide osmotic balance and to protect the cells against extreme osmotic pressure. Some hyperthermophilic prokaryotes also contain high intracellular concentrations of such compounds. A great diversity of organic osmotic solutes, including small sugars, sugar alcohols, amino acids, and amino acid derivatives, is found in nature. Thanks to the high concentrations in which these compounds are often present, Raman spectroscopy may be a useful technique for rapid analysis of such solute(s) both in individual organisms and in natural microbial communities in high‐salt environments, including the possible use of portable miniaturised Raman spectrometers outdoors. Here, we present a database of Raman spectra of some of the most commonly encountered compatible solutes, as well as some less common ones such as ectoine, hydroxyectoine, glycine betaine, glucosylglycerol, mannosylglycerate (potassium salt), and di‐myo‐inositol phosphate, complementing existing information on the Raman spectra of other such solutes such as glycerol, sucrose, and trehalose. Spectra were collected using excitation at 785 nm, and assignment of the major bands was proposed. The data presented complement our knowledge of the spectroscopic characteristics of biomolecules and enable the rapid assessment of the mode of osmotic adaptation used by halophilic microorganisms in culture; this information may be used to obtain information on the distribution of the different solutes in extreme environments on earth and has the added potential for astrobiological applications to estimate the presence of such solutes in stressed environments elsewhere in the universe. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号