首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   0篇
化学   27篇
数学   1篇
物理学   1篇
  2021年   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2008年   3篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
  2002年   2篇
  2000年   1篇
  1977年   1篇
  1970年   1篇
  1968年   3篇
  1967年   1篇
  1966年   2篇
  1964年   3篇
  1962年   2篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
21.
22.
Conclusions New synthesis of 3-methyl-, 3-ethyl-, 3-propyl-, 3-isopropyl-, 3-butyl-, 3-t-butyl-, 3-cyclohexyl-, 3-phenyl-, and 3-benzyl-oxetanes are described, and their more important physical constants are given. These cyclic ethers can be prepared in fairly good yields (40–60%) from the corresponding chloro acetates.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 7, pp. 1241–1244, July, 1966.  相似文献   
23.
24.
A computational study at different levels of theory was performed for the not yet synthesized phosphastannaallenes >SnCP– in order to evaluate the strength of the SnC bond, the main postulated factor to stabilize such species, and the geometry in R2SnCPR derivatives. The influence of the substituents with various electronic effects (H, Me, Ph, F, Cl, OMe, SiMe3) at the Sn or P atoms of the SnCP unit on the SnC bond order was evaluated in the quest for a substituent that would stabilize the phosphastannaallenic unit. PC bond orders have also been calculated.  相似文献   
25.
We have studied the density fingering of an acid-catalyzed autocatalytic reaction in the presence of carboxylate containing polyelectrolyte. The decrease in viscosity as a result of the change in the ionic character of the polymer due to the pH-change during the reaction is the major driving force for the spatiotemporal pattern formation. The front evolution is quantitatively characterized by dispersion curves.  相似文献   
26.
Tri- and tetrafunctional enantiopure ligands have been prepared from 1,8-naphthalic anhydride and the amino acids L-alanine, D-phenylglycine, and L-asparagine to produce (S)-2-(1,8-naphthalimido)propanoic acid (HL(ala)), (R)-2-(1,8-naphthalimido)-2-phenylacetic acid (HL(phg)), and (S)-4-amino-2-(1,8 naphthalimido)-4-oxobutanoic acid (HL(asn)), respectively. Reactions of L(ala)(-) with copper(II) acetate under a variety of solvent conditions has led to the formation and characterization by X-ray crystallography of three similar copper(II) paddlewheel complexes with different axial ligands, [Cu(2)(L(ala))(4)(THF)(2)] (1), [Cu(2)(L(ala))(4)(HL(ala))] (2), and [Cu(2)(L(ala))(4)(py)(THF)] (3). A similar reaction using THF and L(phg)(-) leads to the formation of [Cu(2)(L(phg))(4)(THF)(2)] (4). With the exception of a disordered component in the structure of 4, the naphthalimide groups in all of these compounds are arranged on the same side of the square, central paddlewheel unit, forming what is known as the chiral crown configuration. A variety of π···π stacking interactions of the 1,8-naphthalimide groups organize all of these complexes into supramolecular structures. The addition of the amide group functionality in the L(asn)(-) ligand leads to the formation of tetrameric [Cu(4)(L(asn))(8)(py)(MeOH)] (5), where reciprocal axial coordination of one of the amide carbonyl oxygen atoms between two dimers leads to the tetramer. Extensive supramolecular interactions in 5, mainly the π···π stacking interactions of the 1,8-naphthalimide supramolecular synthon, support an open three-dimensional structure containing large pores filled with solvent. When crystals of [Cu(4)(L(asn))(8)(py)(MeOH)] are exposed to (S)-ethyl lactate vapor, the coordinated methanol molecule is replaced by (S)-ethyl lactate, bonding to the copper ion through the carbonyl oxygen, yielding [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)] (6) without a loss of crystallinity. With the exception of the replacement of the one axial ligand, the molecular structures of 5 and 6 are very similar. In a similar experiment of 5 with vapors of (R)-ethyl lactate, again a change occurs without a loss of crystallinity, but in this case the (R)-ethyl lactate displaces only slightly more than half of the axial methanol molecules forming [Cu(4)(L(asn))(8)(py){((R)-ethyl lactate)(0.58)(MeOH)(0.42)}] (7). Importantly, in 7, the (R)-ethyl lactate coordinates through the hydroxyl group. When crystals of [Cu(4)(L(asn))(8)(py)(MeOH)] are exposed to vapors of racemic ethyl lactate, the coordinated methanol molecule is displaced without a loss of crystallinity exclusively by (S)-ethyl lactate, yielding a new form of the tetramer [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)], in which the ethyl lactate in the pocket bonds to the copper(II) ion through the carbonyl oxygen as with 6. Exposure of [Cu(4)(L(asn))(8)(py){((R)-ethyl lactate)(0.58)(MeOH)(0.42)}] to racemic ethyl lactate yields a third form of [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)], where the three forms of [Cu(4)(L(asn))(8)(py)((S)-ethyl lactate)] have differences in the number of ordered (S)-ethyl lactate molecules located in the interstitial sites. These results demonstrate enantioselective bonding to a metal center in the chiral pocket of both 5 and 7 during single-crystal to single-crystal gas/solid-mediated exchange reactions.  相似文献   
27.
The ligand 4-(1,8-naphthalimido)benzoate, L(C4)(-), containing a linear link between the strong π···π stacking 1,8-naphthalimide supramolecular synthon and the carboxylate donor group, reacts with Zn(O(2)CCH(3))(2)(H(2)O)(2) in the presence of dimethylsulfoxide (DMSO) to yield [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)). This compound contains the "paddlewheel" Zn(2)(O(2)CR)(4) secondary building unit (SBU) that organizes the rigid phenylene and naphthalimide rings of the carboxylate ligands in a square arrangement. The supramolecular architecture is dominated by π···π stacking interactions between naphthalimide rings of one dimer with four adjacent dimers, essentially at right angles, forming an open three-dimensional network structure. Two symmetry equivalent networks of this type interpenetrate generating overall a densely packed three-dimensional, 2-fold interpenetrated architecture in which the CH(2)Cl(2) solvate molecules are trapped in isolated pockets. Upon cooling, single crystals of [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)) undergo two distinct crystallographic phase transitions, as characterized by X-ray diffraction at different temperatures, without loss of crystallinity. These two new phases have supramolecular structures very similar to the room temperature structure, but changes in the ordering of the CH(2)Cl(2) solvate cause shifting of the naphthalimide rings and a lowering of the symmetry. Crystals of [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)) undergo a single-crystal to single-crystal gas/solid guest exchange upon exposure to atmospheric moisture, or faster if placed under vacuum or heated under dry gas to 100 °C, followed by atmospheric moisture, to yield [Zn(2)(L(C4))(4)(DMSO)(2)]·3.9(H(2)O). The molecular and supramolecular structures of this new compound are very similar to the dichloromethane adduct, with now the water molecules encapsulated into the framework. The remarkable feature of both the phase changes and exchange of solvates is that this robust network is not porous; local distortions (ring slippage and tilting changes) of the π···π stacking interactions of the naphthalimide rings that organize these structures allow these changes to take place without the loss of crystallinity. The complexes [Zn(2)(L(C4))(4)(DMSO)(2)]·2(CH(2)Cl(2)) and [Zn(2)(L(C4))(4)(DMSO)(2)]·3.9(H(2)O) show green emission in the solid state.  相似文献   
28.
29.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号