首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1466篇
  免费   16篇
  国内免费   2篇
化学   1201篇
晶体学   15篇
力学   6篇
数学   101篇
物理学   161篇
  2025年   2篇
  2024年   5篇
  2023年   16篇
  2022年   129篇
  2021年   117篇
  2020年   43篇
  2019年   45篇
  2018年   34篇
  2017年   31篇
  2016年   68篇
  2015年   45篇
  2014年   67篇
  2013年   115篇
  2012年   125篇
  2011年   112篇
  2010年   85篇
  2009年   59篇
  2008年   72篇
  2007年   56篇
  2006年   71篇
  2005年   66篇
  2004年   29篇
  2003年   31篇
  2002年   20篇
  2001年   18篇
  2000年   7篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1983年   1篇
  1982年   1篇
排序方式: 共有1484条查询结果,搜索用时 15 毫秒
991.
    
The study demonstrated the effects of precursor feeding on the production of glucosinolates (GSLs), flavonoids, polyphenols, saccharides, and photosynthetic pigments in Nasturtium officinale microshoot cultures grown in Plantform bioreactors. It also evaluated the antioxidant and antimicrobial activities of extracts. L-phenylalanine (Phe) and L-tryptophan (Trp) as precursors were tested at 0.05, 0.1, 0.5, 1.0, and 3.0 mM. They were added at the beginning (day 0) or on day 10 of the culture. Microshoots were harvested after 20 days. Microshoots treated with 3.0 mM Phe (day 0) had the highest total GSL content (269.20 mg/100 g DW). The qualitative and quantitative profiles of the GSLs (UHPLC-DAD-MS/MS) were influenced by precursor feeding. Phe at 3.0 mM stimulated the best production of 4-methoxyglucobrassicin (149.99 mg/100 g DW) and gluconasturtiin (36.17 mg/100 g DW). Total flavonoids increased to a maximum of 1364.38 mg/100 g DW with 3.0 mM Phe (day 0), and polyphenols to a maximum of 1062.76 mg/100 g DW with 3.0 mM Trp (day 0). The precursors also increased the amounts of p-coumaric and ferulic acids, and rutoside, and generally increased the production of active photosynthetic pigments. Antioxidant potential increased the most with 0.1 mM Phe (day 0) (CUPRAC, FRAP), and with 0.5 mM Trp (day 10) (DPPH). The extracts of microshoots treated with 3.0 mM Phe (day 0) showed the most promising bacteriostatic activity against microaerobic Gram-positive acne strains (MIC 250–500 µg/mL, 20–21 mm inhibition zones). No extract was cytotoxic to normal human fibroblasts over the tested concentration range (up to 250 μg/mL).  相似文献   
992.
    
Two triterpene saponins, including a novel serjanic acid derivative, were isolated from Chenopodium hybridum L. (Amaranthaceae) aerial parts. Their structures were elucidated by a combination of spectroscopic methods (MS, 1D and 2D NMR). Both compounds were evaluated for cytotoxicity and selectivity on skin, prostate, gastrointestinal, thyroid and lung cancer cells. Their effect was dose and time-dependent with varied potency, the highest against prostate PC3 and melanoma WM793, where IC50 was lower than the reference drug doxorubicin. Structure–activity relationship is briefly discussed.  相似文献   
993.
    
Plasma proteins play a fundamental role in living organisms. They participate in the transport of endogenous and exogenous substances, especially drugs. 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium salts, have been synthesized as potential anticancer substances used for cancer treatment. Most anticancer substances generate a toxic effect on the human body. In order to check the toxicity and therapeutic dosage of these chemicals, the study of ligand binding to plasma proteins is very relevant. The present work presents the first comparative analysis of the binding of one of the 5-alkyl-12(H)-quino[3,4-b][1,4]benzothiazinium derivatives (Salt1) with human serum albumin (HSA), α-1-acid glycoprotein (AGP) and human gamma globulin (HGG), assessed using fluorescence, UV-Vis and CD spectroscopy. In order to mimic in vivo ligand–protein binding, control normal serum (CNS) was used. Based on the obtained data, the Salt1 binding sites in the tertiary structure of all plasma proteins and control normal serum were identified. Both the association constants (Ka) and the number of binding site classes (n) were calculated using the Klotz method. The strongest complex formed was Salt1–AGPcomplex (Ka = 7.35·104 and 7.86·104 mol·L−1 at excitation wavelengths λex of 275 and 295 nm, respectively). Lower values were obtained for Salt1–HSAcomplex (Ka = 2.45·104 and 2.71·104 mol·L−1) and Salt1–HGGcomplex (Ka = 1.41·104 and 1.33·104 mol·L−1) at excitation wavelengths λex of 275 and 295 nm, respectively, which is a positive phenomenon and contributes to the prolonged action of the drug. Salt1 probably binds to the HSA molecule in Sudlow sites I and II; for the remaining plasma proteins studied, only one binding site was observed. Moreover, using circular dichroism (CD), fluorescence and UV-Vis spectroscopy, no effect on the secondary and tertiary structures of proteins in the absence or presence of Salt1 has been demonstrated. Despite the fact that the conducted studies are basic, from the scientific point of view they are novel and encourage further in vitro and in vivo investigations. As a next part of the study (Part 2), the second new synthetized quinobenzothiazine derivative (Salt2) will be analyzed and published.  相似文献   
994.
    
The purpose of the present study was to broaden the knowledge and understanding of the effects of oclacitinib (OCL), a Janus kinase inhibitor, on T cells in the context of both the immune mechanisms underlying anti-inflammatory and anti-allergic properties of the drug and its safety. The results indicate that beneficial effects of OCL in the treatment of skin allergic diseases may be partially mediated by the inhibition of IL-4 production in CD4+ and CD8+ T cells. To a certain extent, the antiproliferative effect of OCL on CD8+ T cells may also contribute to its therapeutic effect. The study found that OCL does not affect the proliferation of CD4+ T cells or the number of IFN-γ- and IL-17-producing CD4+ and CD8+ T cells. Moreover, OCL was found to counteract the induction of type 1 regulatory T (Tr1) cells and to act as a strong inhibitor of IL-10 production in both CD4+ and CD8+ T cells. Thus, these results indicate that beneficial effects of OCL in the treatment of skin allergic diseases are not mediated through: (a) the abolishment of IFN-γ and IL-17-production in CD4+ and CD8+ T cells; (b) generation of Tr1 cells; (c) inhibition of CD4+ T cell proliferation; (d) induction of IL-10 production in CD4+ T cells. The results of this study strongly suggest that, with respect to the evaluated parameters, OCL exerts a suppressive effect on Th2- but not Th1-mediated immunity.  相似文献   
995.
    
The present work was aimed at studying the potential of elicitation on the accumulation of phenolic compounds in in vitro shoot cultures of Eryngium alpinum L., a protected plant from the Apiaceae family. The study examined the influence of (+)-usnic acid on the biomass growth as well as on the biosynthesis of the desired flavonoids and phenolic acids in the cultured microshoots. The phenolic compound content was determined by HPLC-DAD. The flavonoid of the highest concentration was isoquercetin, and the phenolic acids of the highest amount were rosmarinic acid, caffeic acid and 3,4-dihydroxyphenylacetic acid, both in the non-elicited and elicited biomass. Isoquercetin accumulation was efficiently increased by a longer elicitation with a lower concentration of lichenic compound (107.17 ± 4.67 mg/100 g DW) or a shorter elicitation with a higher concentration of acid (127.54 ± 11.34 and 108.37 ± 12.1 mg/100 g DW). Rosmarinic acid production generally remained high in all elicited and non-elicited microshoots. The highest content of this acid was recorded at 24 h of elicitation with 3.125 µM usnic acid (512.69 ± 4.89 mg/100 g DW). The process of elicitation with (+)-usnic acid, a well-known lichenic compound with allelopathic nature, may therefore be an effective technique of enhancing phenolic compound accumulation in alpine eryngo microshoot biomass.  相似文献   
996.
    
Polyurethane coatings containing copper(II) L-tyrosine and glass microspheres were laser irradiated and underwent electroless metallization. Various sizes of glass microspheres were incorporated into the polyurethane coating matrix in order to examine their effects on surface activation and electroless metallization. The surface of the coatings was activated by using ArF excimer laser emitting ultraviolet radiation (λ = 193 nm) using different number of laser pulses and their fluence. The effects of surface activation and metallization were evaluated mainly based on optical and scanning electron microcopies (SEM), energy-dispersive X-ray spectroscopy (EDX) and photoelectron spectroscopy (XPS). It was found that the presence of glass microspheres enabled the reduction in copper complex content, intensified the ablation process (higher cone-like structures created) and resulted in higher content of copper metallic seeds. On the other hand, the glass microspheres concentration, which was higher for lower size microspheres, was advantageous for obtaining a fully metallized layer.  相似文献   
997.
998.
    
An important focus for innovation in photodynamic therapy (PDT) is theoretical investigations. They employ mostly methods based on Time-Dependent Density Functional Theory (TD-DFT) to study the photochemical properties of photosensitizers. In the current article we review the existing state-of-the-art TD-DFT methods (and beyond) which are employed to study the properties of porphyrinoid-based systems. The review is organized in such a way that each paragraph is devoted to a separate aspect of the PDT mechanism, e.g., correct prediction of the absorption spectra, determination of the singlet–triplet intersystem crossing, and interaction with molecular oxygen. Aspects of the calculation schemes are discussed, such as the choice of the most suitable functional and inclusion of a solvent. Finally, quantitative structure–activity relationship (QSAR) methods used to explore the photochemistry of porphyrinoid-based systems are discussed.  相似文献   
999.
    
Zeolite 13X (NaX) was modified through ion-exchange with alkali and alkaline earth metal cations. The degree of ion exchange was thoroughly characterized with ICP, EDS and XRF methods. The new method of EDS data evaluation for zeolites was presented. It delivers the same reliable results as more complicated, expensive, time consuming and hazardous ICP approach. The highest adsorption capacities at 273 K and 0.95 bar were achieved for materials containing the alkali metals in the following order K < Na < Li, respectively, 4.54, 5.55 and 5.94 mmol/g. It was found that it is associated with the porous parameters of the ion-exchanged samples. The Li0.61Na0.39X form of zeolite exhibited the highest specific surface area of 624 m2/g and micropore volume of 0.35 cm3/g compared to sodium form 569 m2/g and 0.30 cm3/g, respectively. The increase of CO2 uptake is not related with deterioration of CO2 selectivity. At room temperature, the CO2 vs. N2 selectivity remains at a very high stable level prior and after ion exchange in co-adsorption process (XCO2 during adsorption 0.15; XCO2 during desorption 0.95) within measurement uncertainty. Additionally, the Li0.61Na0.39X sample was proven to be stable in the aging adsorption-desorption tests (200 sorption-desorption cycles; circa 11 days of continuous process) exhibiting the CO2 uptake decrease of about 6%. The exchange with alkaline earth metals (Mg, Ca) led to a significant decrease of SSA and micropore volume which correlated with lower CO2 adsorption capacities. Interestingly, the divalent cations cause formation of mesopores, due to the relaxation of lattice strains.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号