首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   7篇
  国内免费   3篇
化学   117篇
力学   1篇
数学   5篇
物理学   10篇
  2022年   3篇
  2021年   3篇
  2020年   6篇
  2019年   5篇
  2018年   9篇
  2017年   2篇
  2016年   7篇
  2015年   9篇
  2014年   10篇
  2013年   12篇
  2012年   9篇
  2011年   8篇
  2010年   11篇
  2009年   3篇
  2008年   5篇
  2007年   10篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   7篇
  1998年   1篇
  1990年   1篇
  1984年   1篇
  1982年   1篇
  1981年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
91.
92.
93.
Organically modified silica substrate containing amine and vinyl functional groups were used for reduction and stabilization of palladium nanoparticles. Uniform spherical nanoparticles of palladium with average diameter of 10 nm were formed on silica substrate by direct contact of the substrate with an aqueous solution of palladium precursor, without the addition of any chemical reducer. Moreover, a sensitive and selective solid state electrochemiluminescence sensor was fabricated for the determination of imipramine, based on Ru(bpy)32+-palladium nanoparticles doped carbon ionic liquid electrode. In this process, imipramine acts as a co-reactant for Ru(bpy)32+. It is believed that the enhancement of the electrochemiluminescence signal in the presence of palladium nanoparticles in the composite is due to palladium catalytic effect on electrochemical and also chemical process involved in formation of Ru(byp)32+*. In addition, the results confirmed that, the rigid composite electrode shows the characteristic of microelectrode arrays. The proposed method was applied to the determination of imipramine in tablets and urine samples. The electrochemiluminescence intensity showed good linearity with the imipramine concentration from 1–100 pM, with a detection limit of 0.1 pM.  相似文献   
94.
A comparison between intensity noise spectra and also the line shapes of gain-guided, weakly-index-guided, and strongly-index-guided semiconductor lasers are made using numerical solution of Maxwell-Bloch equations including spontaneous emission noise.  相似文献   
95.
A rapid flotation method for separation and enrichment of ultra trace amounts of copper(II), cadmium(II), nickel(II) and cobalt(II) ions from water samples is established. At pH 6.5 and with sodium dodecylsulfate used as a foaming reagent, Cu2+, Cd2+, Ni2+ and Co2+ were separated simultaneously with 2-aminocyclopentene-1-dithiocarboxylic acid (ACDA) added to 1 l of aqueous solution. The proposed procedure of preconcentration is applied prior to the determination of these four analytes using inductivity coupled plasma-atomic emission spectrometry (ICP-AES). The effects of pH, concentration of ACDA, applicability of different surfactants and foreign ions on the separation efficiency were investigated. The preconcentration factor of the method is 1000 and the detection limits of copper(II), cadmium(II), nickel(II) and cobalt(II) ions are 0.078, 0.075, 0.072 and 0.080 ng ml(-1), respectively.  相似文献   
96.
The development of an optical pH sensor for high pH values is described based on the immobilization of Aniline Blue on an optically transparent triacetylcellulose membrane. The membrane is useful for repetitive and reversible pH measurements in the pH range of 8.8-13. The relative standard deviation is about 1.6% and 2% for seven measurements of the maximum change at 579 nm from pH 9 to 10.8 and from pH 11.1 to 12.8, respectively. Other advantages of the sensor include rapid equilibration time, long term stability, reversibility, high sensitivity, freedom from interference of other cations and ease of fabrication.  相似文献   
97.
In the present study, for the first time, we successfully employed zeolite/Fe3O4 as a new magnetic nanoparticle sorbent in magnetic solid‐phase extraction for determining phthalates in aqueous samples. Gas chromatography with flame ionization detection was used to detect the target analytes as a powerful instrumental analysis. Affecting parameters in the extraction process, including the amount of adsorbent, adsorption and desorption time, and volume of desorption solvent, were optimized using a response surface methodology based on central composite design. Under the optimum conditions, the linear range for dibutyl phthalate and bis(2‐ethylhexyl phthalate) was varied in the interval of 10–1700 and 10–1200 μg/L, respectively. Limits of detection were 2.80 μg/L for dibutyl phthalate and 3.20 μg/L for bis(2‐ethylhexyl phthalate). The recovery value for the extraction of target analytes was between 97 and 111%. The repeatability and reproducibility of the new proposed method were obtained: 10–13% and 13–13.5%, respectively. The increased sensitivity in using the proposed method has been demonstrated. Compared with previous methods, the new proposed method is an accurate, rapid, and reliable sample‐pretreatment method.  相似文献   
98.
As the most important components of a hemodialysis device, nanofibrous membranes enjoy high interconnected porosity and specific surface area as well as excellect permeability. In this study, a tubular nanofibrous membrane of polysulfone nanofibers was produced via electrospinning method to remove urea and creatinine from urine and blood serums of dialysis patients. Nanofibrous membranes were electrospun at a concentration of 11.5 wt% of polysulfone (PS) and dimethylformamide (DMF)/tetrahydrofuran (THF) with a ratio of 70/30. The effects of the rotational speed of collectors, electrospinning duration, and inner diameter of the tubular nanofibrous membrane on the urea and creatinine removal efficiency of the tubular membrane were investigated through the hemodialysis simulation experiments. It was found that the tubular membrane with an inner diameter of 3 mm elecrospun at shorter duration with lower collecting speed had the highest urea and creatinine removal efficiency. The hemodialysis simulation experiment showed that the urea and creatinine removal efficiency of the tubular membrane with a diameter of 3 mm were 90.4 and 100%, respectively. Also, three patients’ blood serums were tested with the nanofibrous membrane. The results showed that the creatinine and urea removal rates were 93.2 and 90.3%, respectively.  相似文献   
99.
The increasing demand for nanofibers production has led to the rapid growth of the usage of electro‐centrifugal spinning (ECS) systems especially in recent years. Besides the rapid developments, fabrication of novel fibrous materials with novel techniques is still under investigation. Polyvinylepyrrolidone (PVP) is one of the multifunctional materials, which has attracted scientific interests to be employed in a variety of advanced applications. The main objective of the present study was therefore to explore the effects of essential parameters involved in fabrication of PVP nanofibers via an ECS system. The effects of rotational speed (197‐4051 r/min) and applied voltage (0‐14 kV) on the structural and morphological properties of nanofibers were also investigated. Analyses of the scanning electron microscope (SEM) images were performed with Digimizer and SPSS16.0 software to characterize the diameter distribution of the nanofibers. The degree of crystallinity was evaluated by the X‐ray diffraction method. In order to explain the unexpected results, further investigations were performed on the motion of the jet and flow rate. The results showed that instead of nanofibers, microparticles were formed at lower voltages and rotational speeds. The increase in the applied voltage resulted in a decrease in the minimum rotational speed that is required to form continuous fluid jet. The bending instabilities were changed from whipping to spiraling at the voltages above 10 kV. This resulted in the minimum fiber diameter at a voltage between 6 and 10 kV. Moreover, the applied voltage slightly affected the degree of crystallinity. No significant change was observed in the degree of crystallinity by varying the rotational speed.  相似文献   
100.
Two highly sensitive chemiluminescence (CL) systems are described. The method is based on the CL generated during the oxidation of luminol by N-bromosuccinimide (NBS) and N-chlorosuccinimide (NCS) in alkaline medium. The emission intensity is reduced by the presence of some surfactants at concentrations lower than critical micelle concentration (cmc).A new, simple, rapid and selective flow injection CL method for the determination of cationic surfactants such as dodecyltrimethylammonium bromide (DTAB), cetyltrimethylammonium bromide (CTAB) and cetylpyridinium chloride (CPC) is proposed. Their determinations are based on the reducing effect on the emission intensity of NBS-luminol and NCS-luminol chemiluminescent reactions. The effect of analytical and flow injection analysis (FIA) variables on these CL systems and on the determination of the cationic surfactants are discussed. The optimum parameters for the determination of cationic surfactants were studied and were found to be the following: luminol, 1×10−6 M; NBS and NCS both, 5×10−2 M; NaOH, 5×10−2 M and flow rate, 3.5 ml min−1.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号