首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   3篇
化学   32篇
力学   7篇
数学   9篇
物理学   20篇
  2020年   1篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   9篇
  2010年   2篇
  2008年   3篇
  2007年   3篇
  2005年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   4篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1979年   2篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1967年   1篇
  1966年   1篇
  1964年   2篇
  1962年   1篇
  1961年   1篇
  1960年   1篇
  1959年   1篇
  1943年   2篇
  1940年   2篇
  1933年   2篇
排序方式: 共有68条查询结果,搜索用时 15 毫秒
21.
A series of LiMn1-x V x PO4 samples have been synthesized successfully via a conventional solid-state reaction method. The active materials are characterized by x-ray diffraction, x-ray photoelectron spectroscopy, and scanning electron microscopy. The electrochemical performances of the samples are tested using cyclic voltammetry, electrochemical impedance spectroscopy, and charge/discharge measurement techniques. It is confirmed that the samples are in single phase when the content of vanadium (x) is lower than 0.05. If that content is higher than 0.1, the samples are shown to contain an additional conductive phase of Li3V2(PO4)3. The vanadium doping significantly enhances the electrochemical properties of LiMnPO4. It is underlined that the optimal ratio for a low-vanadium doping with the best electrochemical performance is 0.1 and this material exhibits a corresponding initial charge and discharge capacity of 98.9 and 98.1 mAh g?1 at 0.1 C under 50 °C. The capacity retention is higher than 99 % after 30 cycles. The dramatic electrochemical improvement of the LiMnPO4 samples is ascribed to the strengthened ability of lithium-ion diffusion and enhanced electronic conductivity for the V-doped samples.  相似文献   
22.
23.
24.
25.
Surface nitridation of the Li4Ti5O12 particles was carried out by thermal treatment with urea as the nitrogen source in a controllable manner. The titanium nitride (TiN) was formed in the well-dispersed zones on the surface of the Li4Ti5O12 particles, depending on the coverage of the nitride. The surface TiN formed led to a great improvement of the conductivity of the oxide. The extent of the surface nitridation exhibited a large effect on electrochemical behaviors of the Li4Ti5O12 particles, with the Li4Ti5O12/TiN composite (prepared using 6 % urea) providing the best initial capacity and rate capability. Thus, the electrochemical performance of the Li4Ti5O12 particles can be achieved by optimizing surface nitridation of the oxide. The chemically inert TiN occupied the surface sites of the Li4Ti5O12 particles which may have prevented the electrolyte from decomposition and stabilized the surface structure of the Li4Ti5O12 particles, endowing the oxide with excellent cycleability  相似文献   
26.
We derive model-independent relations for SU(2) and SU(3) chiral solitons. These relations depend only on the soliton picture of baryons and therefore are a test of the 1/N expansion. In the two-flavor case we discuss the magnetic moment and the electric quadrupole transition of the Δ. In SU(3) we discuss magnetic moments, including SU(3) breaking effects and 1/N corrections.  相似文献   
27.
28.
Even though they were introduced less than a decade ago, electrochemical paper‐based devices (ePADs) have attracted widespread attention because of their inherent advantages in many applications. ePADs combine the advantages of microfluidic paper‐based devices (low cost, ease of use, equipment free pumping, etc.) for sample handling and processing with the advantages of sensitive and selective detection provided by electrochemistry. As a result, ePADs provide simplicity, portability, reproducibility, low cost and high selectivity and sensitivity for analytical measurements in a variety of applications ranging from clinical diagnostics to environmental sensing. Herein, recent advances in ePAD development and application are reviewed, focusing on electrode fabrication techniques and examples of applications specially focused on environmental monitoring, biological applications and clinical assays. Finally, a summary and prospective directions for ePAD research are also provided.  相似文献   
29.
The technique of hydrophobic ion pairing was used to solubilize the lipase from Candida rugosa in a fluorinated solvent, perfluoromethylcyclohexane (PFMC), in complex with a perfluoropolyether (PFPE) surfactant, KDP 4606. The enzyme-surfactant complex was determined to have a hydrodynamic diameter of 6.5 nm at atmospheric pressure by dynamic light scattering (DLS), indicating that a single lipase molecule is stabilized by surrounding surfactant molecules. The complex formed a highly stable colloidal dispersion in both liquid and supercritical carbon dioxide at high CO2 densities (>0.92 and 0.847 g/mL, respectively), with 4% by volume PFMC as a cosolvent, yielding a fluid that was orange, optically translucent, and very nearly transparent. DLS demonstrated aggregation of the enzyme-surfactant complexes in CO2 at 25 and 40 degrees C and various pressures (2000-5000 psia) with hydrodynamic diameters ranging from 50 to 200 nm. The mechanism by which the enzyme-surfactant particles aggregate was shown to be via condensation due to very low polydispersities as characterized by the size distribution moments. Interparticle interactions were investigated with respect to density and temperature, and it was shown that on decreasing the CO2 density, the particle size increased, and the stability against settling decreased. Particle size also decreased as the temperature was increased to 40 degrees C, at constant CO2 density. Nanoparticle aggregates of an enzyme-surfactant complex in CO2, which are nearly optically transparent and stable to settling, are a promising new alternative to previous types of dispersions of proteins in CO2 that either required water/CO2 microemulsions or were composed of large particles unstable to settling.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号