首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   3篇
  国内免费   1篇
化学   101篇
力学   1篇
数学   28篇
物理学   15篇
  2022年   6篇
  2021年   6篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   14篇
  2012年   18篇
  2011年   9篇
  2010年   8篇
  2009年   8篇
  2008年   7篇
  2007年   5篇
  2006年   11篇
  2005年   7篇
  2004年   11篇
  2003年   6篇
  2002年   4篇
  2000年   1篇
  1998年   1篇
  1996年   4篇
  1995年   1篇
  1993年   2篇
  1978年   1篇
排序方式: 共有145条查询结果,搜索用时 15 毫秒
141.
Design, synthesis, and multifunctionality of p-octiphenyl beta-barrel pores with external LRL triads and internal HH dyads are described. Molecular recognition of anionic fullerenes > calixarenes > pyrenes by guanidinium arrays at the outer pore surface is shown to result in pore opening, whereas alpha-helix recognition within the topologically matching internal space is shown to result in noncompetitive pore blockage. This experimental evidence for multifunctionality is supported by comparison with pertinent control pores and blockers, by structural studies using FRET from p-octiphenyl donors in the pore to BODIPY acceptors in the bilayer, and by molecular mechanics simulations. Practical usefulness of ligand-gated synthetic multifunctional pores is exemplified with the continuous detection of chemical processes.  相似文献   
142.
A quantitative method for the analysis of EPR spectra from dinuclear Mn(II) complexes is presented. The complex [(Me(3)TACN)(2)Mn(II)(2)(mu-OAc)(3)]BPh(4) (1) (Me(3)TACN=N, N('),N(")-trimethyl-1,4,7-triazacyclononane; OAc=acetate(1-); BPh(4)=tetraphenylborate(1-)) was studied with EPR spectroscopy at X- and Q-band frequencies, for both perpendicular and parallel polarizations of the microwave field, and with variable temperature (2-50K). Complex 1 is an antiferromagnetically coupled dimer which shows signals from all excited spin manifolds, S=1 to 5. The spectra were simulated with diagonalization of the full spin Hamiltonian which includes the Zeeman and zero-field splittings of the individual manganese sites within the dimer, the exchange and dipolar coupling between the two manganese sites of the dimer, and the nuclear hyperfine coupling for each manganese ion. All possible transitions for all spin manifolds were simulated, with the intensities determined from the calculated probability of each transition. In addition, the non-uniform broadening of all resonances was quantitatively predicted using a lineshape model based on D- and r-strain. As the temperature is increased from 2K, an 11-line hyperfine pattern characteristic of dinuclear Mn(II) is first observed from the S=3 manifold. D- and r-strain are the dominate broadening effects that determine where the hyperfine pattern will be resolved. A single unique parameter set was found to simulate all spectra arising for all temperatures, microwave frequencies, and microwave modes. The simulations are quantitative, allowing for the first time the determination of species concentrations directly from EPR spectra. Thus, this work describes the first method for the quantitative characterization of EPR spectra of dinuclear manganese centers in model complexes and proteins. The exchange coupling parameter J for complex 1 was determined (J=-1.5+/-0.3 cm(-1); H(ex)=-2JS(1).S(2)) and found to be in agreement with a previous determination from magnetization. The phenomenon of exchange striction was found to be insignificant for 1.  相似文献   
143.
One of the major limitations yet to the global implementation of polymer electrolyte membrane fuel cells (PEMFCs) is the cathode catalyst. The development of efficient platinum-free catalysts is the key issue to solve the problem of slow kinetics of the oxygen reduction reaction (ORR) and high cost. We report a promising catalyst for ORR prepared through the annealing treatment under inert conditions of the cobalt-benzotriazole (Co-BTA) complex supported on carbon nanotubes (CNTs). The N-rich benzotriazole precursor was chosen based on its ability to complex Co(II) ions and generate under annealing highly reactive radicals able to tune the physicochemical properties of CNTs. X-Ray photoelectron spectroscopy (XPS) was used to follow the surface structure changes and highlight the active electrocatalytic sites towards the ORR. To achieve further evaluation of the catalysts in acidic medium, voltamperometry, rotating disk electrode (RDE), rotating ring-disk electrode (RRDE) and half-cell measurements were performed. The resulting catalysts (Co/N/CNTs) all show catalytic activity towards the ORR, the most active one resulting from annealing at 700 °C. The overall electron transfer number for the catalyzed ORR was determined to be ~3.7 with no change upon the catalyst loading, suggesting that the ORR was dominated by a 4e(-) transfer process. The results indicate a promising alternative cathode catalyst for ORR in fuel cells, although its performance is still lower (overpotential around 110 mV evaluated by RDE and RRDE) than the reference Pt/C catalyst.  相似文献   
144.
The sorption of the thallous ion from aqueous acidic solution (pH = 1.5) onto as-synthesized and modified ETS-10 titanosilicates was studied by using an isotope dilution method and a batch-mode technique. The present results show that the thallium(I) sorption was effective onto all three considered materials and is enhanced by the porosity and acidity modification of the ETS-10 titanosilicate. The best uptake performance was achieved by the meso-ETS-10. This behavior is explained based on the newly created additional mesoporous system and enriching the external surface with silanol groups. Also, the presence of phosphorus enhanced the inherent porosity allowing thus better internal diffusion properties of crystalline material. However, the chemically modified surface seems to have a negative contribution to the kinetic uptake of thallous ion as shown by the positive value of the activation energy E a, in comparison with the processes more favorable energetically for ETS-10 and meso-ETS-10 materials.  相似文献   
145.
Poly-(ϵ-caprolactone) is a biodegradable polymer, which can be used for both medical and environmental applications. Due to its multiple applications the synthesis of such a polymer has been attracting an increasing attention in the past few decades. In our work, the polymers were synthesised by bulk polymerisation, using different lanthanide halides as initiators. The lanthanide derivatives are known as very active catalysts in the ring-opening polymerisation of cyclic esters. Moreover, they are not toxic in comparison of catalysts, which are usually used for this synthesis. In this paper, the influence of the lanthanides on both the hydrolytic and enzymatic degradation of the PCL obtained by ring-opening polymerization of ϵ-caprolactone with different lanthanide-based catalysts such as: lanthane chloride (LaCl3), ytterbium chloride (YbCl3) and samarium chloride (SmCl3) was assessed. Samarium seems to slightly accelerate the hydrolytic degradation of the polymer and to slow down or inhibit its enzymatic degradation, mainly when the molecular weight of the polymer is high. The behaviour of PCL containing another lanthanide like lanthane is dependent on the nature of the metallic ion. Complete degradation, by the Lipase PS from Pseudomonas cepacia, is achieved only with Ytterbium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号