首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   513篇
  免费   18篇
  国内免费   5篇
化学   312篇
晶体学   3篇
力学   13篇
数学   40篇
物理学   168篇
  2023年   5篇
  2022年   7篇
  2021年   11篇
  2020年   16篇
  2019年   16篇
  2018年   20篇
  2017年   10篇
  2016年   32篇
  2015年   11篇
  2014年   21篇
  2013年   59篇
  2012年   40篇
  2011年   47篇
  2010年   27篇
  2009年   14篇
  2008年   34篇
  2007年   32篇
  2006年   17篇
  2005年   23篇
  2004年   20篇
  2003年   9篇
  2002年   12篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1998年   6篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1981年   1篇
  1980年   2篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1970年   1篇
  1926年   2篇
排序方式: 共有536条查询结果,搜索用时 765 毫秒
51.
The present work aims at developing a new process to selectively synthesize sulfoxide from sulfides using ultrasound. Methyl phenyl sulfide (MPS) has been taken as a model reactant. The reaction has been carried out in ultrasonic bath with an operating frequency of 22 kHz and maximum power supply of 120 W with an actual power dissipation of approximately 40 W measured using calorimetric studies. Effect of various parameters such as presence and absence of catalyst, type of catalyst (catalysts used were sodium tungstate and ammonium molybdate), temperature, concentration of hydrogen peroxide, effect of molar ratio of MPS to H(2)O(2) has been investigated with an aim of obtaining the optimum conditions for the synthesis of sulfoxides. It was observed that the presence of catalyst is a must to achieve appreciable conversions. It was also observed that the periodic addition of stoichiometric amount of hydrogen peroxide instead of sudden addition of it (total quantity of hydrogen peroxide remains the same) gave better selectivity for sulfoxide. The maximum conversion achieved in the present work was approximately 88.42% with sulfone formation being only 0.4% indicating a 99.6% selectivity for the desired product i.e. sulfoxides.  相似文献   
52.
The N-terminally pyrene-conjugated oligopeptide, Py-Phe-Phe-Ala-OMe, (Py=pyrene 1-butyryl acyl) forms transparent, stable, supramolecular fluorescent organogels in various organic solvents. One of these organogels was thoroughly studied using various techniques including transmission electron microscopy (TEM), field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), Fourier-transform infrared (FTIR) spectroscopy, photoluminescence (PL) spectroscopy, and rheology. Unfunctionalized and non-oxidized graphene was successfully incorporated into this fluorescent organogel in o-dichlorobenzene (ODCB) to form a stable hybrid organogel. Graphene is well dispersed into the gel medium by using non-covalent π-π stacking interactions with the pyrene-conjugated gelator peptide. In the presence of graphene, the minimum gelation concentration (mgc) of the hybrid organogel was lowered significantly. This suggests that there is a favorable interaction between the graphene and the gelator peptide within the hybrid organogel system. This hybrid organogel was characterized using TEM, AFM, FTIR, PL, and rheological studies. The TEM study of graphene-containing hybrid organogel revealed the presence of both graphene sheets and entangled gel nanofibers. The AFM study indicated the presence of 3 to 4 layers in exfoliated graphene in ODCB and the presence of both graphene nanosheets and the network of gel nanofibers in the hybrid gel system. The rheological investigation suggested that the flow of the hybrid organogel had become more resistant towards the applied angular frequency upon the incorporation of graphene into the organogel. The hybrid gel is about seven times more rigid than that of the native gel.  相似文献   
53.
All the minima on the potential energy surfaces of homotrimers and tetramers of PH(3) are identified and analyzed as to the source of their stability. The same is done with mixed trimers in which one PH(3) molecule is replaced by either NH(3) or PFH(2). The primary noncovalent attraction in all global minima is the BP···D (D = N,P) bond which is characterized by the transfer of charge from a lone pair of the donor D to a σ? B-P antibond of the partner molecule which is turned away from D, the same force earlier identified in the pertinent dimers. Examination of secondary minima reveals the presence of other weaker forces, some of which do not occur within the dimers. Examples of the latter include PH···P, NH···P, and PH···F H-bonds, and "reverse" H-bonds in which the source of the electron density is the smaller tail lobe of the donor lone pair. The global minima are cyclic structures in all cases, and exhibit some cooperativity, albeit to a small degree. The energy spacing of the oligomers is much smaller than that in the corresponding strongly H-bonded complexes such as the water trimer.  相似文献   
54.
This work is concerned with eigenvalue problems for structured matrix polynomials, including complex symmetric, Hermitian, even, odd, palindromic, and anti-palindromic matrix polynomials. Most numerical approaches to solving such eigenvalue problems proceed by linearizing the matrix polynomial into a matrix pencil of larger size. Recently, linearizations have been classified for which the pencil reflects the structure of the original polynomial. A question of practical importance is whether this process of linearization significantly increases the eigenvalue sensitivity with respect to structured perturbations. For all structures under consideration, we show that this cannot happen if the matrix polynomial is well scaled: there is always a structured linearization for which the structured eigenvalue condition number does not differ much. This implies, for example, that a structure-preserving algorithm applied to the linearization fully benefits from a potentially low structured eigenvalue condition number of the original matrix polynomial.  相似文献   
55.
Let X be an infinite dimensional real reflexive Banach space with dual space X and GX, open and bounded. Assume that X and X are locally uniformly convex. Let T:XD(T)→2X be maximal monotone and strongly quasibounded, S:XD(S)→X maximal monotone, and C:XD(C)→X strongly quasibounded w.r.t. S and such that it satisfies a generalized (S+)-condition w.r.t. S. Assume that D(S)=LD(T)∩D(C), where L is a dense subspace of X, and 0∈T(0),S(0)=0. A new topological degree theory is introduced for the sum T+S+C, with degree mapping d(T+S+C,G,0). The reason for this development is the creation of a useful tool for the study of a class of time-dependent problems involving three operators. This degree theory is based on a degree theory that was recently developed by Kartsatos and Skrypnik just for the single-valued sum S+C, as above.  相似文献   
56.
Adhikari BB  Gurung M  Kawakita H  Ohto K 《The Analyst》2011,136(21):4570-4579
The solvent extraction behavior of multiple proton ionizable p-tert-butylcalix[4]arene and [6]arene carboxylic acid derivatives towards indium has been investigated along with an acyclic monomeric analogue from weakly acidic media into chloroform. The extraction mechanism is ion exchange and carboxylic acid groups are adequate ligating sites for extraction. The cyclic structure of calixarene ligands to accommodate the potential guest species and the cooperativity effect of multifunctional groups significantly affect the complexation behavior and calixarene derivatives are found to be excellent extractants over the monomeric analogue. The composition of the extracted complex depends on the solution pH and attempts to determine the composition of the extracted complex for the extraction of indium have been stymied by complications arising from the formation of polynuclear species of indium and bridged polymeric species of calixarene carboxylic acid derivatives. One mole of calix[4]arene derivative extracts 2.5 moles of indium whereas the calix[6]arene derivative tends to extract 4.0 moles of indium. The loaded indium is back extracted with 1 mol dm(-3) hydrochloric acid solution. Though quantitative back extraction of indium was achieved from the fully loaded calix[6]arene derivative, it was only achieved up to 85% in the case of the calix[4]arene derivative.  相似文献   
57.
We report for the first time, the synthesis of siloxane-imide co-polymers by the reaction of mixtures of 1,4-bis(aminobutyl)tetramethyldisiloxane (ABTMDS) and 1,3-bis(4-aminophenoxy)benzene (TPE-R) with bisphenol A diphthalic anhydride (BPADA) using water as the polymerization solvent. A series of co-polymers were prepared incorporating 10, 20, 40 and 100 mol% of ABTMDS with the aromatic diamine TPE-R as the co-monomer. The synthesized co-polymers showed number average molecular weights in the range of 25,000–60,000. As expected the glass transition temperatures (Tgs) and moduli of the polymers were found to decrease with increasing amounts of the siloxane monomer and the homo-polymer containing only the siloxane diamine showing the lowest Tg (60 °C). The resulting polymers could be solution cast into strong and flexible membranes which showed significant decreases in water absorption and moisture permeability compared to the control polymer without siloxane groups. The polymers were characterized by FTIR, 13C and 1H NMR, GPC, DSC and mechanical properties and structural comparisons were made with similar polymers made by standard solvent synthesis methods. Also cross-linked polymers were prepared by the reaction of ABTMDS with the aromatic homo-polymer control and their membrane properties were compared to those of the water synthesized siloxane co-polymers with a similar siloxane content.  相似文献   
58.
We include the phonon modes originating from the three layers of Cu(100)/Cu(111) surface atoms on the dynamics of molecular [H(2)(v,j)/D(2)(v,j)] degrees of freedom (DOFs) through a mean field approach, where the surface temperature is incorporated into the effective Hamiltonian (potential) either by considering Boltzmann probability (BP) or by including the Bose-Einstein probability (BEP) factor for the initial state distribution of the surface modes. The formulation of effective potential has been carried out by invoking the expression of transition probabilities for phonon modes known from the "stochastic" treatment of linearly forced harmonic oscillator (LFHO). We perform four-dimensional (4D?2D) as well as six-dimensional (6D) quantum dynamics on a parametrically time and temperature-dependent effective Hamiltonian to calculate elastic/inelastic scattering cross-section of the scattered molecule for the H(2)(v,j)-Cu(100) system, and dissociative chemisorption-physisorption for both H(2)(v,j)-Cu(100) and D(2)(v,j)-Cu(111) systems. Calculated sticking probabilities by either 4D?2D or 6D quantum dynamics on an effective potential constructed by using BP factor for the initial state distribution of the phonon modes could not show any surface temperature dependence. In the BEP case, (a) both 4D?2D and 6D quantum dynamics demonstrate that the phonon modes of the Cu(100) surface affect the state-to-state transition probabilities of the scattered H(2) molecule substantially, and (b) the sticking probabilities due to the collision of H(2) on Cu(100) and D(2) on Cu(111) surfaces show noticeable and substantial change, respectively, as function of surface temperature only when the quantum dynamics of all six molecular DOFs are treated in a fully correlated manner (6D).  相似文献   
59.
We include the effect of the phonon modes originating from the three layers of Cu(1nn) surface atoms on the dynamics of incoming molecular [H(2)(v, j)/D(2)(v, j)] degrees of freedom (DOFs) through a mean-field approach, where the surface temperature is incorporated into the effective potential by considering Bose-Einstein probability (BEP) factor for the initial state distribution of the surface modes calculated within harmonic approximation. Such time and temperature dependent effective Hamiltonian is further subdivided assuming a weak coupling between the two sets of molecular DOFs, namely, (x, y, z, Z) and (X, Y), respectively, in particular, to reduce the computational cost and the corresponding coupled quantum dynamical equations of motion have been formulated in terms of Time Dependent Discrete Variable Representation (TDDVR) approach. We demonstrate the workability of TDDVR method to investigate the scattering of H(2)(v, j) on Cu(1nn) surface by calculating the reaction probabilities and scattering cross-sections. Calculated results show that the phonon modes affect (a) the state-to-state transition probabilities of the scattered H(2) molecule substantially but chemisorption and physisorption processes negligibly and (b) the reaction probability of the incoming D(2) molecule noticeably.  相似文献   
60.
In the present work we have reported a simple exact analytical solution to the curve crossing problem of two linear diabatic potentials by transfer matrix method. Our problem assumes the crossing of two linear diabatic potentials which are coupled to each other by an arbitrary coupling (in contrast to linear potentials in the vicinity of crossing points) and for numerical calculation purposes this arbitrary coupling is taken as Gaussian coupling which is further expressed as a collection of Dirac delta functions. Further we calculated the transition probability from one diabatic potential to another by the use of this method.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号