首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2829篇
  免费   81篇
  国内免费   3篇
化学   1856篇
晶体学   28篇
力学   74篇
数学   276篇
物理学   679篇
  2024年   3篇
  2023年   23篇
  2022年   101篇
  2021年   100篇
  2020年   79篇
  2019年   82篇
  2018年   81篇
  2017年   77篇
  2016年   131篇
  2015年   97篇
  2014年   120篇
  2013年   165篇
  2012年   186篇
  2011年   222篇
  2010年   154篇
  2009年   144篇
  2008年   172篇
  2007年   169篇
  2006年   112篇
  2005年   109篇
  2004年   87篇
  2003年   49篇
  2002年   55篇
  2001年   34篇
  2000年   48篇
  1999年   19篇
  1998年   24篇
  1997年   15篇
  1996年   19篇
  1995年   25篇
  1994年   26篇
  1993年   13篇
  1992年   16篇
  1991年   26篇
  1990年   22篇
  1989年   16篇
  1988年   12篇
  1987年   12篇
  1986年   10篇
  1985年   9篇
  1984年   7篇
  1983年   3篇
  1982年   3篇
  1981年   7篇
  1980年   7篇
  1979年   2篇
  1978年   2篇
  1977年   5篇
  1976年   2篇
  1975年   4篇
排序方式: 共有2913条查询结果,搜索用时 15 毫秒
21.
Abstract

The present article gives an overview of recent publications and modern techniques of sample preparation for food analysis employing atomic and inorganic mass spectrometric techniques, such as flame atomic absorption spectrometry, chemical vapor generation atomic absorption and atomic fluorescence spectrometry, graphite furnace atomic absorption spectrometry, inductively coupled plasma optical emission spectrometry, and inductively coupled plasma mass spectrometry. Among the most frequently applied sample preparation techniques for food analysis are dry ashing, usually with the addition of an ashing aid, and acid digestion, preferably with the assistance of microwave energy. Slurry preparation, particularly with the assistance of ultrasound, is increasingly used to reduce acid consumption and sample preparation time. Direct analysis of solid samples is gaining importance in the field of food analysis as it offers the highest sensitivity, avoids the use of acids and other aggressive reagents, makes possible the analysis of micro‐samples, and can be applied for fast screening analysis, e.g., of fresh meat.  相似文献   
22.
Abstract: This article presents a critical evaluation of the analytical procedures used for the determination of lead in seawater, which is important because lead is a good indicator of marine pollution caused by human activities. Sampling, storage, and pretreatment techniques are briefly overviewed, including the significance of systematic errors that cannot be corrected later on. The main techniques in this article are electrothermal–atomic absorption spectrometry (ET-AAS), inductively coupled plasma–mass spectrometry (ICP-MS), and voltammetry. Flame atomic absorption spectrometry (FAAS) and inductively coupled plasma–optical emission spectrometry (ICP-OES) are treated as well, although their limits of quantification are not sufficient for a determination of lead in unpolluted seawater. Even when separation and preconcentration techniques are applied, these techniques are only capable of detecting lead in polluted coastal seawater. Separation and preconcentration are actually also required for ET-AAS and ICP-MS in order to determine the lowest concentrations of lead found in unpolluted open-ocean seawater, which is still a challenge for the analytical chemist.  相似文献   
23.
The paper deals with the global minimization of a differentiable cost function mapping a ball of a finite dimensional Euclidean space into an interval of real numbers. It is established that a suitable random perturbation of the gradient method with a fixed parameter generates a bounded minimizing sequence and leads to a global minimum: the perturbation avoids convergence to local minima. The stated results suggest an algorithm for the numerical approximation of global minima: experiments are performed for the problem of fitting a sum of exponentials to discrete data and to a nonlinear system involving about 5000 variables. The effect of the random perturbation is examined by comparison with the purely deterministic gradient method.  相似文献   
24.
25.
We have measured the luminescent properties of single crystals of LiAl5O8:Fe3+. In addition to a zero-phonon line due to Fe3+ in A-sites, we have observed another sharp fluorescent line at 699.2 nm which we assign to Fe3+ occupying B-sites. The excitation spectrum of the B-site Fe3+ shows characteristics similar to those of the A-site Fe3+ but are also shifted towards longer wavelengths. The spectra of the single crystals are compared with those of ordered and disordered powder samples.  相似文献   
26.
Detection     
This review on second- and third-generation multidetectors devoted to heavy-ion collisions aims to cover the last twenty years. The presented list of devices is not exhaustive but regroups most of the techniques used during this period for nuclear reactions at intermediate energy (≃ 10A MeV to 1A GeV), both for charged-particle and neutron detection. The main part will be devoted to 4π multidetectors, projectile decay fragmentation, high-resolution magnetic spectrometers, auxiliary detectors and neutron detection. The last part will present the progress in electronics and detection in view of the construction of future-generation detectors.  相似文献   
27.
We consider the Hammersley interacting particle system starting from a shock initial profile with densities \(\rho ,\lambda \in {\mathbb R}\) (\( \rho < \lambda \)). The microscopic shock is taken as the position of a second-class particle initially at the origin, and the main results are: (i) a central limit theorem for the shock; (ii) the variance of the shock equals \(2[\lambda \rho (\lambda - \rho )]^{-1}t + O(t^{2/3})\). By using the same method of proof, we also prove similar results for first-class particles.  相似文献   
28.
Ionics - A simple and rapid method was employed for the modification of carbon paste electrode with iron nanoparticle-decorated multiwalled carbon nanotubes (MCPE/Fe-MWCNTs). The synergistic effect...  相似文献   
29.
Pd/C-Sb2O5·SnO2 and PdAu/C-Sb2O5·SnO2 electrocatalysts with different PdAu atomic ratio (90:10, 70:30, and 50:50) were prepared by borohydride reduction method, and characterized by X-ray diffraction, transmission electron microscopy, cyclic voltammetry, chronoamperommetry, and performance test on direct formic acid fuel cell at 100 °C. X-ray diffraction showed for Pd/C-Sb2O5·SnO2 the presence of Pd face-centered cubic (fcc) system, while for PdAu/C-Sb2O5·SnO2 it showed the presence of Pd fcc phase, PdAu fcc alloys and a segregated phases fcc Pd-rich and Au-rich phases. TEM micrographs and histograms for all electrocatalysts showed that the nanoparticles where not well dispersed on the support and some agglomerates were present. The electrochemical studies showed that PdAu/C-Sb2O5·SnO2 (70:30) had superior performance for formic acid electro-oxidation at 25 °C compared to others electrocatalysts prepared while PdAu/C-Sb2O5·SnO2 (90:10) showed superior performance in direct formic acidic fuel cell at 100 °C. These results indicated that the addition of 10–30 % Au to Pd favor the electro-oxidation of formic acid. This effect could be attributed to the synergy between the constituents of the electrocatalyst (metallic Pd and Au, SnO2, and Sb2O5·SnO2).  相似文献   
30.
The purpose here is to investigate, by means of the constructal principle, the influence of the convective heat transfer flux at the cavity surfaces over the optimal geometry of a T-shaped cavity that intrudes into a solid conducting wall. The cavity is cooled by a steady stream of convection while the solid generates heat uniformly and it is insulated on the external perimeter. The convective heat flux is imposed as a boundary condition of the cavity surfaces and the geometric optimization is achieved for several values of parameter a = (2hA1/2/k)1/2. The structure of the T-shaped cavity has four degrees of freedom: L0/L1 (ratio between the lengths of the stem and bifurcated branches), H1/L1 (ratio between the thickness and length of the bifurcated branches), H0/L0 (ratio between the thickness and length of the stem), and H/L (ratio between the height and length of the conducting solid wall) and one restriction, the ratio between the cavity volume and solid volume (φ). The purpose of the numerical investigation is to minimize the maximal dimensionless excess of temperature between the solid and the cavity. The simulations were performed for fixed values of H/L = 1.0 and φ = 0.1. Even for the first and second levels of optimization, (L1/L0) ○○ and (H0/L0), the results revealed that there is no universal shape that optimizes the cavity geometry for every imposed value of a. The T-shaped cavity geometry adapts to the variation of the convective heat flux imposed at the cavity surfaces, i.e., the system flows and morphs with the imposed conditions so that its currents flow more and more easily. The three times optimal shape for lower ratios of a is achieved when the cavity has a higher penetration into the solid domain and for a thinner stem. As the magnitude of a increases, the bifurcated branch displaces toward the center of the solid domain and the number of highest temperature points also increases, i.e., the distribution of temperature field is improved according to the constructal principle of optimal distribution of imperfections.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号