首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   212篇
  免费   5篇
  国内免费   2篇
化学   131篇
力学   9篇
数学   4篇
物理学   75篇
  2024年   2篇
  2023年   2篇
  2022年   16篇
  2021年   13篇
  2020年   6篇
  2019年   13篇
  2018年   10篇
  2017年   4篇
  2016年   10篇
  2015年   9篇
  2014年   11篇
  2013年   25篇
  2012年   8篇
  2011年   10篇
  2010年   6篇
  2009年   6篇
  2008年   8篇
  2007年   6篇
  2006年   6篇
  2005年   5篇
  2004年   1篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   3篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有219条查询结果,搜索用时 0 毫秒
21.
Polymers as coating materials were combined with quartz crystal microbalances (QCMs) to design sensor devices for the detection of both ionic and neutral analytes in liquid phase. The design and geometry of dual and tetraelectrode QCMs have been optimized to reduce electric field interferences. An unusual Sauerbrey effect was observed while exposing potassium salt solution to 10- and 20-MHz QCMs, i.e. increase in the frequency shifts by a factor of seven, which is attributed to electro-acoustic phenomena. Non-functionalized sol-gel materials were synthesized by templating with hydrophobic salt such as tetraethyl ammonium picrate. Imprinting with these ions of low charge density leads to sensitive layers, and UV–Vis spectroscopy was used to check re-inclusion of this analyte. In the next strategy, functionalized polyurethane for potassium ions and sol-gel materials with aminopropyl group as ligand were generated to tune selectivity and sensitivity towards Ni2+ and Cu2+. Methacrylic acid polymers were optimized for the detection of atrazine by hydrogen bonding; double molecular imprinted polyurethane approach was followed for pyrene recognition. Finally, these imprinted polymers were combined with tetraelectrode QCM to develop sensor platform.  相似文献   
22.
In recent years, flexible and wearable electronics such as smart cards, smart fabrics, bio-sensors, soft robotics, and internet-linked electronics have impacted our lives. In order to meet the requirements of more flexible and adaptable paradigm shifts, wearable products may need to be seamlessly integrated. A great deal of effort has been made in the last two decades to develop flexible lithium-ion batteries (FLIBs). The selection of suitable flexible materials is important for the development of flexible electrolytes self-supported and supported electrodes. This review is focused on the critical discussion of the factors that evaluate the flexibility of the materials and their potential path toward achieving the FLIBs. Following this analysis, we present how to evaluate the flexibility of the battery materials and FLIBs. We describe the chemistry of carbon-based materials, covalent-organic frameworks (COFs), metal-organic frameworks (MOFs), and MXene-based materials and their flexible cell design that represented excellent electrochemical performances during bending. Furthermore, the application of state-of-the-art solid polymer and solid electrolytes to accelerate the development of FLIBs is introduced. Analyzing the contributions and developments of different countries has also been highlighted in the past decade. In addition, the prospects and potential of flexible materials and their engineering are also discussed, providing the roadmap for further developments in this fast-evolving field of FLIB research.  相似文献   
23.
The current study attempted, for the first time, to qualitatively and quantitatively determine the phytochemical components of Elatostema papillosum methanol extract and their biological activities. The present study represents an effort to correlate our previously reported biological activities with a computational study, including molecular docking, and ADME/T (absorption, distribution, metabolism, and excretion/toxicity) analyses, to identify the phytochemicals that are potentially responsible for the antioxidant, antidepressant, anxiolytic, analgesic, and anti-inflammatory activities of this plant. In the gas chromatography-mass spectroscopy analysis, a total of 24 compounds were identified, seven of which were documented as being bioactive based on their binding affinities. These seven were subjected to molecular docking studies that were correlated with the pharmacological outcomes. Additionally, the ADME/T properties of these compounds were evaluated to determine their drug-like properties and toxicity levels. The seven selected, isolated compounds displayed favorable binding affinities to potassium channels, human serotonin receptor, cyclooxygenase-1 (COX-1), COX-2, nuclear factor (NF)-κB, and human peroxiredoxin 5 receptor proteins. Phytol acetate, and terpene compounds identified in E. papillosum displayed strong predictive binding affinities towards the human serotonin receptor. Furthermore, 3-trifluoroacetoxypentadecane showed a significant binding affinity for the KcsA potassium channel. Eicosanal showed the highest predicted binding affinity towards the human peroxiredoxin 5 receptor. All of these findings support the observed in vivo antidepressant and anxiolytic effects and the in vitro antioxidant effects observed for this extract. The identified compounds from E. papillosum showed the lowest binding affinities towards COX-1, COX-2, and NF-κB receptors, which indicated the inconsequential impacts of this extract against the activities of these three proteins. Overall, E. papillosum appears to be bioactive and could represent a potential source for the development of alternative medicines; however, further analytical experiments remain necessary.  相似文献   
24.
Inhibin is a molecule that belongs to peptide hormones and is excreted through pituitary gonadotropins stimulation action on the granulosa cells of the ovaries. However, the differential regulation of inhibin and follicle-stimulating hormone (FSH) on granulosa cell tumor growth in mice inhibin-deficient females is not yet well understood. The objective of this study was to evaluate the role of inhibin and FSH on the granulosa cells of ovarian follicles at the premature antral stage. This study stimulated immature wild-type (WT) and Inhibin-α knockout (Inha−/−) female mice with human chorionic gonadotropin (hCG) and examined hCG-induced gene expression changes in granulosa cells. Also, screening of differentially expressed genes (DEGs) was performed in the two groups under study. In addition, related modules to external traits and key gene drivers were determined through Weighted Gene Co-Expression Network Analysis (WGCNA) algorithm. The results identified a number of 1074 and 931 DEGs and 343 overlapping DEGs (ODEGs) were shared in the two groups. Some 341 ODEGs had high relevance and consistent expression direction, with a significant correlation coefficient (r2 = 0.9145). Additionally, the gene co-expression network of selected 153 genes showed 122 nodes enriched to 21 GO biological processes (BP) and reproduction and 3 genes related to genomic pathways. By using principal component analysis (PCA), the 14 genes in the regulatory network were fixed and the cumulative proportion of fitted top three principal components was 94.64%. In conclusion, this study revealed the novelty of using ODEGs for investigating the inhibin and FSH hormone pathways that might open the way toward gene therapy for granulosa cell tumors. Also, these genes could be used as biomarkers for tracking the changes in inhibin and FSH hormone from the changes in the nutrition pattern.  相似文献   
25.
A new solid phase extraction (SPE) method has been developed for the speciation of Cr(III) and Cr(VI). This method is based on the adsorption of Cr(VI) on modified alumina‐coated magnetite nanoparticles (ACMNPs). Total chromium in different samples was determined as Cr(VI) after oxidation of Cr(III) to Cr(VI) using H2O2. The chromium concentration has been determined by flame atomic absorption spectrometric (FAAS) technique and amount of Cr(III) was calculated by substracting the concentration of Cr(VI) from total chromium concentration. The effect of parameters such as pH, amount of adsorbent, contact time, sample volume, eluent type, H2O2 concentration and cetyltrimethylammonium bromide (CTAB) concentration as modifier on the quantitative recovery of Cr(VI) were investigated. Under the optimal experimental conditions, the preconcentration factor, detection limit, linear range and relative standard deviation (RSD) of Cr(VI) were 140 (for 350 mL of sample solution), 0.083 ng mL?1, 0.1‐10.0 ng mL?1 and 4.6% (for 5.0 ng mL?1, n = 7), respectively. This method avoided the time‐consuming column‐passing process of loading large volume samples in traditional SPE through the rapid isolation of CTAB@ACMNPs with an adscititious magnet. The proposed method was successfully applied to the determination and speciation of chromium in different water and wastewater samples and suitable recoveries were obtained.  相似文献   
26.
We present the first study of a driven nonequilibrium lattice system in the two-phase region, withshifted periodic boundary conditions, forcing steps into the interface. When the shift corresponds to small angles with respect to the driving field, we find nonanalytic behavior in the (internal) energy of the system, supporting numerical evidence that interface roughness is suppressed by the field. For larger shifts, the competition between the driving field and the boundary induces the breakup of a single strip with tilted interfaces into many narrower strips with aligned interfaces. The size and temperature dependences of the critical angles of such breakup transitions are studied.  相似文献   
27.
The scaling equation of state for a system with short range interactions and a one-component order parameter is calculated to order ?3 in the ?-expansion. The results are not compatible with the linear parametric model.  相似文献   
28.
ABSTRACT

Crystalline silicon oxy-nitride (SiON) composite films are deposited on Si substrate for multiple (5, 15, 25 and 50) focus shots (FS) by plasma focus device. The X-rays diffraction patterns reveal the development of various diffraction peaks related to Si, Si3N4, and SiO2 phases which confirms the formation of SiON composite film. The intensity of Si3N4 (1 0 2) plane is linearly increased with the increase of FS. The Si3N4 (1 0 2) phase does not nucleate for 5 FS. Raman analysis confirms the formation of β–Si–N phase. Raman and Fourier transform infrared spectroscopy analysis reveals that the strength of chemical bonds like Si–N, Si–O formed during the deposition process of SiON composite films is associated with the bonds intensity which in turn depends on the number of FS. The field emission scanning electron microscopic analysis reveals that the surface morphology like size, shape and distribution of micro/nano-dimensional particles, film compactness and the formation of micro-rods, micro-teethes and micro-tubes of SiON composite films is entirely associated with the rise in substrate surface transient temperature which in turn depends on the increasing number of FS. The EDX spectrum confirms the presence of Si (22.5?±?4.7 at. %), N (13.4?±?4.5 at. %) and O (54.7?±?11.3 at. %) in the SiON composite film. The thickness of SiON composite film deposited for 50 FS is found to ~15.47?µm.  相似文献   
29.
The structural and morphological features influencing the glass transition temperature of epoxy/silica nanohybrid and nanocomposite materials containing 25–30 phr of nanoscale silica phases are discussed in this letter to answer the questions related to the processing–structure–property relationships. X-ray photoelectron spectroscopy and atomic force microscopy are used to study the surface chemical structure and morphology of epoxy/silica nanohybrids and nanocomposites. Nanohybrids are synthesized via in situ sol-gel process, while the respective nanocomposites are prepared by mechanical blending of preformed silica nanoparticles into epoxy resin. Differential scanning calorimetry is used to determine glass transition temperature of different materials. The surface analytical characterizations reveal that in situ sol-gel process is more suitable for producing organic–inorganic hybrid materials with superior glass transition temperature owing to the achievement of stronger interfacial compatibility and greater crosslink density. A number of other factors affecting glass transition temperature are explored and discussed with reference to surface chemistry, microstructure, and morphology of epoxy/silica nanohybrids and nanocomposites, respectively.  相似文献   
30.
We develop a point source method (PSM) to obtain flow field reconstructions from remote measurements. The PSM belongs to the class of decomposition methods in inverse scattering because it solves the nonlinear and ill‐posed inverse shape reconstruction problem by a decomposition into a linear ill‐posed problem and a nonlinear well‐posed problem. As a model problem, we investigate the reconstruction of the flow field of two‐dimensional stationary Oseen equation, which is obtained by linearizing the Navier–Stokes equation with kinematic viscosity μ > 0 around the constant velocity u0. In contrast to acoustics or electromagnetics, the use of the PSM in fluid dynamics leads to a number of challenges in terms of the analysis and the proper setup of the scheme, in particular, because the null‐spaces of the integral operators under consideration are no longer trivial and the fundamental solution is not symmetric in its spatial coordinate. We provide a suitable formulation of the method and prove convergence of flow reconstructions by the PSM. For the realization of the reconstruction when the inclusions are not known, we employ domain sampling. We will demonstrate the feasibility of the method for reconstructing one or several objects by numerical examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号