首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   2篇
化学   46篇
力学   1篇
数学   2篇
物理学   10篇
  2023年   1篇
  2022年   8篇
  2021年   5篇
  2020年   3篇
  2019年   5篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   5篇
  2014年   1篇
  2013年   9篇
  2012年   4篇
  2011年   3篇
  2010年   2篇
  2009年   1篇
  2008年   5篇
  2007年   1篇
  2006年   1篇
  1990年   1篇
排序方式: 共有59条查询结果,搜索用时 15 毫秒
21.
Silicon-on-insulator (SOI) waveguide devices are emerging for the realization of optical signal processing systems for the last couple of years. The recent technological advancement in silicon photonics is the main driving force at the back of these devices. Using non-linear optical phenomenon in silicon wires and their compatibility with CMOS devices provide the stage for integrated photonic devices. All-optical signal processing devices are being investigated at present, but the chip-scale solution provided by the silicon photonics is the most promising. In this research we have investigated all-optical signal processing in a 10 mm long SOI waveguide by exploiting well established coupled wave equations. We consider single pulsed pump to analyze frequency shifting by four-wave-mixing (FWM). For the wavelengths 20?30 nm far from the pump, the gain overcomes nonlinear losses resulting in higher frequency conversion efficiency.  相似文献   
22.
Developing a cost-effective, efficient, and stable oxygen evolution reaction (OER) catalyst is of great importance for sustainable energy conversion and storage. In this study, we report a facile one-step fabrication of cationic surfactant-assisted Prussian blue analogues (PBAs) Mx[Fe(CN)5CH3C6H4NH2]∙yC19H34NBr abbreviated as SF[Fe-Tol-M] (where SF = N-tridecyl-3-methylpyridinium bromide and M = Mn, Co and Ni) as efficient heterogeneous OER electrocatalysts. The electrocatalysts have been characterized by Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) coupled with energy dispersive X-ray (EDX) analysis, and X-ray photoelectron spectroscopy (XPS). In the presence of cationic surfactant (SF), PBAs-based electrodes showed enhanced redox current, high surface area and robust stability compared to the recently reported PBAs. SF[Fe-Tol-Co] hybrid catalyst shows superior electrochemical OER activity with a much lower over-potential (610 mV) to attain the current density of 10 mA cm−2 with the Tafel slope value of 103 mV·dec−1 than that for SF[Fe-Tol-Ni] and SF[Fe-Tol-Mn]. Moreover, the electrochemical impedance spectroscopy (EIS) unveiled that SF[Fe-Tol-Co] exhibits smaller charge transfer resistance, which results in a faster kinetics towards OER. Furthermore, SF[Fe-Tol-Co] offered excellent stability for continues oxygen production over extended reaction time. This work provides a surface assisted facile electrode fabrication approach for developing binder-free OER electrocatalysts for efficient water oxidation.  相似文献   
23.
Plants of the genus Strobilanthes have notable use in folklore medicines as well as being used for pharmacological purposes. The present work explored the biological predispositions of Strobilanthes glutinosus and attempted to accomplish a comprehensive chemical profile through GC-MS of different fractions concerning polarity (chloroform and n-butanol) and LC-ESI-MS of methanolic extract by both positive and negative ionization modes. The biological characteristics such as antioxidant potential were assessed by applying six different methods. The potential for clinically relevant enzyme (α-amylase, α-glucosidase, and tyrosinase) inhibition was examined. The DPPH, ABTS, CUPRAC, and FRAP results revealed that the methanol fraction presented efficient results. The phosphomolybdenum assay revealed that the n-hexane fraction showed the most efficient results, while maximum metal chelation potential was observed for the chloroform fraction. The GC-MS profiling of n-butanol and chloroform fractions revealed the existence of several (110) important compounds presenting different classes (fatty acids, phenols, alkanes, monoterpenes, diterpenes, sesquiterpenoids, and sterols), while LC-ESI-MS tentatively identified the presence of 44 clinically important secondary metabolites. The n-hexane fraction exhibited the highest potential against α-amylase (497.98 mm ACAE/g extract) and α-glucosidase (605.85 mm ACAE/g extract). Significant inhibitory activity against tyrosinase enzyme was displayed by fraction. Six of the prevailing compounds from the GC-MS study (lupeol, beta-amyrin, stigmasterol, gamma sitosterol, 9,12-octadecadienoic acid, and n-hexadecanoic acid) were modelled against α-glucosidase and α-amylase enzymes along with a comparison of binding affinity to standard acarbose, while three compounds identified through LC-ESI-MS were docked to the mushroom tyrosinase enzyme and presented with significant biding affinities. Thus, it is assumed that S. glutinosus demonstrated effective antioxidant and enzyme inhibition prospects with effective bioactive molecules, potentially opening the door to a new application in the field of medicine.  相似文献   
24.
25.
Sterically encumbered diaryl ethers are prepared based on formal [3+3] cyclizations of novel 4-aryloxy-1,3-bis(trimethylsilyloxy)-1,3-dienes.  相似文献   
26.
27.
The dyeing behaviour of mercerized and gamma irradiated cotton fabric using stilbene based direct dye has been investigated. The fabric was treated with different concentrations of alkali to optimize the mercerization. The optimum mercerized cotton fabric was irradiated to absorbed doses of 2, 4, 6, 8 and 10 kGy using Cs-137 gamma irradiator. Dyeing was performed using irradiated and un-irradiated cotton with dye solutions. The dyeing parameters such as temperature, time of dyeing, pH of dyeing solutions and salt concentration were optimized. The colour strength values of dyed fabrics were evaluated by comparing irradiated and un-irradiated cotton in CIE Lab system using Spectra flash SF650. Methods suggested by International Standard Organization (ISO) were employed to study the effect of gamma irradiation on the colourfastness properties of dyed fabric. It was found that mercerized and irradiated cotton have not only improved the colour strength but enhanced the rating of fastness properties also.  相似文献   
28.
The Me(3)SiOTf-mediated condensation of 1-ethoxy-2-fluoro-1,3-bis(trimethylsilyloxy) 1,3-dienes with 3-cyanochromones afforded 3-cyano-2-(4-ethoxy-3-fluoro-2,4-dioxobutyl)chroman-4-ones. Their reaction with triethylamine afforded fluorinated azaxanthones or biaryls. The product distribution depends on the structure of the diene. The formation of the biaryls can be explained by an unprecedented domino "retro-Michael/aldol/fragmentation" reaction.  相似文献   
29.
A new mechanism is proposed that describes the gas-phase separation of chiral molecules found in amphetamine-type substances (ATS) by the use of high-resolution ion mobility spectrometry (IMS). Straight-chain achiral alcohols of increasing carbon chain length, from methanol to n-octanol, are used as drift gas modifiers in IMS to highlight the mechanism proposed for gas-phase separations of these chiral molecules. The results suggest the possibility of using these achiral modifiers to separate the chiral molecules (R,S) and (S,R)-ephedrine and (S,S) and (R,R)-pseudoephedrine which contain an internal hydroxyl group at the first chiral center and an amino group at the other chiral center. Ionization was achieved with an electrospray source, the ions were introduced into an IMS with a resolving power of 80, and the resulting ion clusters were characterized with a coupled quadrupole mass spectrometer detector. A complementary computational study conducted at the density functional B3LYP/6-31g level of theory for the electronic structure of the analyte–modifier clusters was also performed, and showed either “bridged” or “independent” binding. The combined experimental and simulation data support the proposed mechanism for gas-phase chiral separations using achiral modifiers in the gas phase, thus enhancing the potential to conduct fast chiral separations with relative ease and efficiency.  相似文献   
30.
The necessity of selectively detecting various organic vapors is primitive not only with respect to regular environmental and industrial hazard monitoring, but also in detecting explosives to combat terrorism and for defense applications. Today, the huge arsenal of micro-sensors has revolutionized the traditional methods of analysis by, e.g. replacing expensive laboratory equipment, and has made the remote screening of atmospheric threats possible. Surface acoustic wave (SAW) sensors – based on piezoelectric crystal resonators – are extremely sensitive to even very small perturbations in the external atmosphere, because the energy associated with the acoustic waves is confined to the crystal surface. Combined with suitably designed molecular recognition materials SAW devices could develop into highly selective and fast responsive miniaturized sensors, which are capable of continuously monitoring a specific organic gas, preferably in the sub-ppm regime. For this purpose, different types of recognition layers ranging from nanostructured metal oxides and carbons to pristine or molecularly imprinted polymers and self-assembled monolayers have been applied in the past decade. We present a critical review of the recent developments in nano- and micro-engineered synthetic recognition materials predominantly used for SAW-based organic vapor sensors. Besides highlighting their potential to realize real-time vapor sensing, their limitations and future perspectives are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号