首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2144篇
  免费   43篇
  国内免费   8篇
化学   1195篇
晶体学   5篇
力学   70篇
数学   266篇
物理学   659篇
  2021年   12篇
  2019年   16篇
  2018年   15篇
  2017年   11篇
  2016年   31篇
  2015年   22篇
  2014年   35篇
  2013年   87篇
  2012年   84篇
  2011年   108篇
  2010年   70篇
  2009年   48篇
  2008年   132篇
  2007年   127篇
  2006年   99篇
  2005年   93篇
  2004年   89篇
  2003年   63篇
  2002年   75篇
  2001年   51篇
  2000年   52篇
  1999年   19篇
  1998年   23篇
  1997年   24篇
  1996年   48篇
  1995年   61篇
  1994年   40篇
  1993年   45篇
  1992年   41篇
  1991年   28篇
  1990年   25篇
  1989年   24篇
  1988年   25篇
  1987年   28篇
  1986年   17篇
  1985年   20篇
  1984年   24篇
  1983年   20篇
  1982年   21篇
  1981年   32篇
  1980年   21篇
  1979年   23篇
  1978年   24篇
  1977年   23篇
  1976年   29篇
  1975年   25篇
  1974年   17篇
  1973年   21篇
  1971年   14篇
  1970年   12篇
排序方式: 共有2195条查询结果,搜索用时 15 毫秒
981.
Two methods are described to determine indium and managenese in high-purity tin. In the first method indium and manganese are separated from the tin and antimony matrix activities on Dowex 1X8 anion exchanger. Tin and antimony are adsorbed in 10M HF while indium and manganese are eluted. In the second method the incident γ-ray intensity due to the tin matrix is reduced by placing a lead absorber between the sample and the detector. The reproducibility and the sensitivity of both methods are of the order of 10 ppb for manganese and of 1 ppb for indium for 1 g samples and a neutron flux of 1011 n·cm−2·sec−1. Aspirant of the N. F. W. O.  相似文献   
982.
Adams CJ  Pope SJ 《Inorganic chemistry》2004,43(11):3492-3499
The reaction of Ru(Me(2)bipy)(PPh(3))(2)Cl(2) 1 with terminal alkynes HCCR in the presence of TlPF(6) leads to the formation of the vinylidene compounds [Ru(Me(2)bipy)(PPh(3))(2)Cl(=C=CHR)][PF(6)] (2) (2a, R = Bu(t); 2b, R = p-C(6)H(4)-Me; 2c, R = Ph). These compounds decompose in oxygenated solution to form the carbonyl compound [Ru(Me(2)bipy)(PPh(3))(2)Cl(CO)][PF(6)] (3), and may be deprotonated by K(2)CO(3) to give the ruthenium(II) terminal acetylide compounds Ru(Me(2)bipy)(PPh(3))(2)Cl(CC-R) (4) (4a, R = Bu(t); 4b, R = p-C(6)H(4)-Me; 4c, R = Ph). Cyclic voltammetry shows that 2a-c may also be reductively dehydrogenated to form 4a-c. 4a-c are readily oxidized to their ruthenium(III) analogues [4a](+)-[4c](+), and the changes seen in their UV/visible spectra upon performing this oxidation are analyzed. These show that whereas the UV/visible spectra of 4a-c show MLCT bands from the ruthenium atom to the bipyridyl ligand, those of [4a](+)-[4c](+) contain LMCT bands originating on the acetylide ligands. This is in agreement with the IR and ESR spectra of [4a](+)-[4c](+). The X-ray crystal structures of the redox pair 4a and [4a][PF(6)()] have been determined, allowing the bonding within the metal-acetylide unit to be analyzed, and an attempt is made to determine Lever electrochemical parameters (E(L)) for the vinylidene and acetylide ligands seen herein. Room temperature luminescence measurements on 4a-c show that the compounds are not strongly emissive.  相似文献   
983.
A constrained derivative, cis-1-amino-2-(3-indolyl)cyclohexane-1-carboxylic acid, cis-W3, was designed to test the rotamer model of tryptophan photophysics. The conformational constraint enforces a single chi(1) conformation, analogous to the chi(1) = 60 degrees rotamer of tryptophan. The side-chain torsion angles in the X-ray structure of cis-W3 were chi(1) = 58.5 degrees and chi(2) = -88.7 degrees. Molecular mechanics calculations suggested two chi(2) rotamers for cis-W3 in solution, -100 degrees and 80 degrees, analogous to the chi(2) = +/-90 degrees rotamers of tryptophan. The fluorescence decay of the cis-W3 zwitterion was biexponential with lifetimes of 3.1 and 0.3 ns at 25 degrees C. The relative amplitudes of the lifetime components match the chi(2) rotamer populations predicted by molecular mechanics. The longer lifetime represents the major chi(2) = -100 degrees rotamer. The shorter lifetime represents the minor chi(2) = 80 degrees rotamer having the ammonium group closer to C4 of the indole ring (labeled C5 in the cis-W3 X-ray structure). Intramolecular excited-state proton transfer occurs at indole C4 in the tryptophan zwitterion (Saito, I.; Sugiyama, H.; Yamamoto, A.; Muramatsu, S.; Matsuura,T. J. Am. Chem. Soc. 1984, 106, 4286-4287). Photochemical isotope exchange experiments showed that H-D exchange occurs exclusively at C5 in the cis-W3 zwitterion, consistent with the presence of the chi(2) = 80 degrees rotamer in solution. The rates of two nonradiative processes, excited-state proton and electron transfer, were measured for individual chi(2) rotamers. The excited-state proton-transfer rate was determined from H-D exchange and fluorescence lifetime data. The excited-state electron-transfer rate was determined from the temperature dependence of the fluorescence lifetime. The major quenching process in the -100 degrees rotamer is electron transfer from the excited indole to carboxylate. Electron transfer also occurs in the 80 degrees rotamer, but the major quenching process is intramolecular proton transfer. Both quenching processes are suppressed by deprotonation of the amino group. The results for cis-W3 provide compelling evidence that the complex fluorescence decay of the tryptophan zwitterion originates in ground-state heterogeneity with the different lifetimes primarily reflecting different intramolecular excited-state proton- and electron-transfer rates in various rotamers.  相似文献   
984.
Different linear low density polyethylenes (LLDPEs) based on hexene and butene comonomer were irradiated with γ-rays under air. The oxidation products have been quantified using NO and SF4 treatments by IR spectroscopy. An FTIR examination displayed unexpected products such as free hydroperoxides and trans-vinylenes. It was found that the type of α-olefin used to process LLDPE films may influence the mechanism of oxidation. Parameters such as the melt index and the density seem to affect the γ-oxidation rate. © 1993 John Wiley & Sons, Inc.  相似文献   
985.
A flow injection on-line sorption preconcentration method for the electrothermal AAS determination of platinum has been developed. The pyrrolidine dithiocarbamate complexes of either Pt4+ or Pt2+, formed in 0.7 mol L–1 HNO3, are on-line adsorbed on the inner walls of a PTFE knotted reactor and subsequently eluted with methanol. An enhancement factor of 112 and a detection limit (3 σ) of 10 ng L–1 along with a sampling frequency of 21 h–1 are achieved with a 90 s preconcentration time at a sample flow rate of 8.8 mL min–1. The relative standard deviation is 2.5% for 0.4 μg L–1 Pt. The method has been applied to the determination of platinum in blood samples. Received: 6 October 1997 / Revised: 26 November 1997 / Accepted: 3 December 1997  相似文献   
986.
A flow injection on-line sorption system was developed for the separation and preconcentration of traces of Ag, Cd, Co, Ni, Pb, U and Y from natural water samples with subsequent detection by ICP TOF MS. Simultaneous preconcentration of the analytes was achieved by complexation with the chelating reagent 1-phenyl-3-methyl-4-benzoylpyrazol-5-one immobilized on the inner walls of a (200 cm × 0.5 mm) PTFE knotted reactor. The analytes were eluted and transported to an axial ICP TOF MS system with 1% (v/v) HNO3 containing 0.3 μg l−1 of Rh as an internal standard using ultrasonic nebulization. The detection limits (3σ) varied from 0.3 ng l−1 for Y to 15.2 ng l−1 for Ni and the precision (R.S.D.) was better than 4%. Using a loading time of 90 s and a sample flow rate of 4.5 ml min−1, enhancement factors of 3-14 were obtained for the different analytes in comparison with their direct determination by ICP TOF MS with ultrasonic nebulization without preconcentration. The accuracy of the method was demonstrated by analysis of water based certified reference materials.  相似文献   
987.
Adams RD  Smith JL 《Inorganic chemistry》2005,44(12):4276-4281
The reaction of Rh(4)(CO)(12) with Ph(3)GeH at 97 degrees C has yielded the first rhodium cluster complexes containing bridging germylene and germylyne ligands: Rh(8)(CO)(12)(mu(4)-GePh)(6), 9, and Rh(3)(CO)(5)(GePh(3))(mu-GePh(2))(3)(mu(3)-GePh)(mu-H), 10. When the reaction is performed under hydrogen, the yield of 9 is increased to 42% and no 10 is formed. Compound 9 contains a cluster of eight rhodium atoms arranged in the form of a distorted cube. There are six mu(4)-GePh groups bridging each face of this distorted cube. Four of the rhodium atoms have two terminal carbonyl ligands, while the remaining four rhodium atoms have only one carbonyl ligand. Compound 10 contains a triangular cluster of three rhodium atoms with one terminal GePh(3) ligand, three bridging GePh(2) ligands, and one triply bridging GePh ligand. There is also one hydrido ligand that is believed to bridge one of the Rh-Ge bonds. Compound 9 reacted with PPhMe(2) at 25 degrees C to give the tetraphosphine derivative Rh(8)(CO)(8)(PPhMe(2))(4)(mu(4)-GePh)(6), 11. The structure of 11 is similar to 9 except that a PPhMe(2) ligand has replaced a carbonyl ligand on each the four Rh(CO)(2) groups. Compound 10 reacted with CO at 68 degrees C to give the complex Rh(3)(CO)(6)(mu-GePh(2))(3)(mu(3)-GePh), 12. Compound 12 is formed by the loss of the hydrido ligand and the terminal GePh(3) ligand from 10 and the addition of one carbonyl ligand. All compounds were fully characterized by IR, NMR, elemental, and single-crystal X-ray diffraction analyses.  相似文献   
988.
The compound Be1.09B3 was prepared by arc-melting of the elemental constituents. The structure of single crystals taken from the arc-melted boule was determined from single-crystal X-ray data (T=120 K) and is hexagonal, having space group P6/mmm, and lattice parameters a=9.7738(7) Å and c=9.5467(6) Å, R=0.047. The structure consists of a hexagonal array of boronicosahedra, nonicosahedral B12 cages, and B18 cages. Stacked hexagonal layers of boron atoms, hexagons formed by B and Be, and equilateral triangles of boron atoms disordered by a 60° rotation exist along a 6-fold axis down the [001] direction. A superconducting transition at 0.72 K is clearly indicated by resistivity measurements.  相似文献   
989.
Gold Nitrogen Heterocycles. Synthesis, Properties, and Structure of [(CH3)2AuNH2]4 and [(CH3)2AuN(CH3)2]2 Dimethyl gold iodide reacts with alkali metal amides to form Au-N heterocycles. KNH2 yields the eight-membered ring [(CH3)2AuNH2]4, whereas with LiN(CH3)2 the four-membered ring [(CH3)2AuN(CH3)2]2 is obtained. The light sensitive, cyclic gold amides are stable against hydrolysis and do not react with Lewis bases. [(CH3)2AuN(CH3)2]2 crystallizes monoclinic in the space group P21/c with Z = 2. The molecules exhibit the symmetry D2h. Symmetrical amido bridges form a planar Au-N heterocyclus with distances Au-N = 214 pm.  相似文献   
990.
The iridium/iodide-catalyzed carbonylation of methanol to acetic acid is promoted by carbonyl complexes of W, Re, Ru, and Os and simple iodides of Zn, Cd, Hg, Ga, and In. Iodide salts (LiI and Bu(4)NI) are catalyst poisons. In situ IR spectroscopy shows that the catalyst resting state (at H(2)O levels > or = 5% w/w) is fac,cis-[Ir(CO)(2)I(3)Me](-), 2. The stoichiometric carbonylation of 2 into [Ir(CO)(2)I(3)(COMe)](-), 6, is accelerated by substoichiometric amounts of neutral promoter species (e.g., [Ru(CO)(3)I(2)](2), [Ru(CO)(2)I(2)](n), InI(3), GaI(3), and ZnI(2)). The rate increase is approximately proportional to promoter concentration for promoter:Ir ratios of 0-0.2. By contrast anionic Ru complexes (e.g., [Ru(CO)(3)I(3)](-), [Ru(CO)(2)I(4)](2)(-)) do not promote carbonylation of 2 and Bu(4)NI is an inhibitor. Mechanistic studies indicate that the promoters accelerate carbonylation of 2 by abstracting an iodide ligand from the Ir center, allowing coordination of CO to give [Ir(CO)(3)I(2)Me], 4, identified by high-pressure IR and NMR spectroscopy. Migratory CO insertion is ca. 700 times faster for 4 than for 2 (85 degrees C, PhCl), representing a lowering of Delta G(++) by 20 kJ mol(-1). Ab initio calculations support a more facile methyl migration in 4, the principal factor being decreased pi-back-donation to the carbonyl ligands compared to 2. The fac,cis isomer of [Ir(CO)(2)I(3)(COMe)](-), 6a (as its Ph(4)As(+) salt), was characterized by X-ray crystallography. A catalytic mechanism is proposed in which the promoter [M(CO)(m)I(n)] (M = Ru, In; m = 3, 0; n = 2, 3) binds I(-) to form [M(CO)(m)I(n+1)](-)H(3)O(+) and catalyzes the reaction HI(aq) + MeOAc --> MeI + HOAc. This moderates the concentration of HI(aq) and so facilitates catalytic turnover via neutral 4.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号