首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   0篇
化学   20篇
晶体学   1篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   2篇
  2011年   2篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2004年   2篇
  2003年   1篇
  2001年   1篇
排序方式: 共有21条查询结果,搜索用时 15 毫秒
11.
We have prepared and characterized Fe3O4 nanoparticles and their binary mixtures (IL-Fe3O4) with 1-hexyl-3-methylimidazolium bromide as ionic liquid for use in the adsorption of lysozyme (LYS), bovine serum albumin (BSA), and myoglobin (MYO). The optimum operational conditions for the adsorption of proteins (at 0.05–2.0 mg?mL?1) were 4.0 mg?mL?1 of nanoparticles and a contact time of 10 min. The maximum adsorption capacities are 455, 182 and 143 mg for LYS, BSA, and MYO per gram of adsorbent, respectively. The Langmuir model better fits the adsorption isotherms, with adsorption constants of 0.003, 0.015 and 0.008 L?mg?1, in order, for LYS, BSA, MYO. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients. The adsorption processes are endothermic. The proteins can be desorbed from the nanoparticles by using NaCl solution at pH 9.5, and the nanoparticles thus can be recycled.
Figure
Nanoparticles of Fe3O4 as well as its binary mixtures with ionic liquids (IL-Fe3O4) were prepared and used for adsorption of lysozyme, bovine serum albumin and myoglobin. The mean size and the surface morphology of both nanoparticles were characterized by TEM, DLS, XRD, FTIR and TGA techniques. The applicability of two kinetic models including pseudo-first order and pseudo-second order model was estimated on the basis of comparative analysis of the corresponding rate parameters, equilibrium adsorption capacity and correlation coefficients  相似文献   
12.
A specterophotometric method for simultaneous determination of aniline and cyclohexylamine using principal component artificial neural networks is proposed. This method is based on the reactions involving aniline and/or cyclohexylamine, with bis(acetylacetoneethylendiamine)tributylphosphine cobalt(III) perchlorate as a complexing reagent. A nonionic surfactant, Triton X-100, was used for dissolving the complexes and intensifying the signals. The absorption data were based on the spectra registered in the range of 350 - 550 nm. An artificial neural network consisting of three layers of nodes was trained by applying a back-propagation learning rule. Sigmoid transfer functions were used in the hidden and output layers to facilitate nonlinear calibration. The predictive ability of artificial neural networks was examined for the determination of aniline and cyclohexylamine in synthetic mixtures.  相似文献   
13.
14.
In this article, the ability of a new and efficient hard–soft method, previously proposed by our research group, is reported for modeling of the complex formation equilibria in the presence of interferences. This method is based on the net analyte signal (NAS) concept, which is a part of total signal that is directly related to the concentration of the component of interest. It monitors the concentration changes of any chemical species involved in the evolutionary process without requiring any pure spectra or having previous knowledge about the presence of the interferences. The proposed hard–soft method based on net analyte signal (HS-NAS) only needs a chemical model for one of the species involved in the reaction under study. The reliability of the method was examined by applying it to the measured data and spectrum of the known real systems of Fe2+–azithromycin and Ca2+–tetracycline.  相似文献   
15.
A new electrochemical sensor was developed for determination of D-penicillamine using glassy carbon electrode which had been modified by gold nanoparticles–reduced graphene oxide nanocomposite (AuNPs/RGO/GCE) in aqueous solution. Cyclic voltammetry, transmission electron microscopy and electrochemical impedance spectroscopy were used for characterization of the modified electrode. The results indicated that the kinetic of oxidation reaction of D-penicillamine at the surface of the electrode was controlled by both diffusion and adsorption processes. In 0.1 mol L?1 phosphate buffer (pH 2.0), the oxidation current increased linearly with concentration of D-penicillamine with a linear range of 5.0 × 10?6 to 1.1 × 10?4 mol L?1 and regression coefficient of R 2 = 0.9972. Theoretical detection limit, defined based on 3σ of the blank signal (n = 9) divided by the slope of the linear regression equation, was 3.9 × 10?6 mol L?1 D-penicillamine using differential pulse voltammetry. The developed method was successfully applied to the determination of D-penicillamine in pharmaceutical formulation and blood serum samples.  相似文献   
16.
Absalan G  Akhond M  Sheikhian L 《Talanta》2008,77(1):407-411
In this paper, imidazolium-based ionic liquids [C4mim][PF6], [C6mim][PF6], [C8mim][PF6], [C6mim][BF4] and [C8mim][BF4] were tested as extracting solvents for removal of 3-indole butyric acid (IBA) from aqueous media with subsequent determination using HPLC. Percent extraction of IBA was strongly affected by pH of aqueous phases and the chemical structures of ionic liquids (ILs). Extraction of IBA was quantitative in the pH values lower than pKa of IBA. Considering both extraction and stripping efficiencies of IBA, [C4mim][PF6] was found to act more efficient than other studied ILs. Capacity of [C4mim][PF6] was 17.6 × 10−4 mmol IBA per 1.0 mL of IL. Ionic strength of aqueous phase and temperature had shown no serious effects on extraction efficiency of IBA. A preconcentration factor of 100 and a relative standard deviation of 1.16% were obtained. It was found that ionic liquid phase was reusable almost five times for extraction/stripping purposes. 3-Indole acetic acid showed interferential effect in the extraction step. In order to assess the applicability of the method, extraction and stripping of IBA from pea plants and some other samples were studied.  相似文献   
17.
An extracellular protease was purified from a novel moderately halophilic bacterium Salinivibrio sp. strain MS-7 by the combination of an acetone precipitation (40–80 %) step and a DEAE-cellulose anion exchange column chromatography. Kinetic parameters of the enzyme exhibited V max and K m of 130 U/mg and 1.14 mg/ml, respectively, using casein as a substrate. The biochemical properties of the enzyme revealed that the 21-kDa protease had a temperature and pH optimum of 50 °C and 8.0, respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride, Pefabloc SC, chymostatin, and also EDTA, indicating that it belongs to the class of serine metalloproteases. Interestingly, Ba2+ and Ca2+ (2 mM) strongly enhanced the enzyme activity, while Fe2+ and Mg2+ activated moderately and Zn2+, Ni2+, and Hg2+ decreased the enzyme activity. The effect of organic solvents with different logP on the purified protease revealed complete stability in toluene, ethyl acetate, chloroform, and n-hexane at 10 and 50 % (v/v) and moderate stability even in 50 % of DMSO and ethanol. The behavior of the MS-7 protease in three imidazolium-based ionic liquids exhibited suitable activity in these green solvent systems, especially in 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]). Comparison of the purified protease with other previously reported proteases suggests that strain MS-7 secrets a novel organic solvent-tolerant protease with outstanding activity in organic solvents and imidazolium-based ionic liquids, which could be applied in low water synthetic section of industrial biotechnology.  相似文献   
18.
The potential of the modified magnetic nanoparticles for covalent immobilization of porcine pancreatic α-amylase has been investigated. The synthesis and immobilization processes were simple and fast. The co-precipitation method was used for synthesis of magnetic iron oxide (Fe3O4) nanoparticles (NPs) which were subsequently coated with silica through sol–gel reaction. The amino-functionalized NPs were prepared by treating silica-coated NPs with 3-aminopropyltriethoxysilane followed by covalent immobilization of α-amylase by glutaraldehyde. The optimum enzyme concentration and incubation time for immobilization reaction were 150 mg and 4 h, respectively. Upon this immobilization, the α-amylase retained more than 50 % of its initial specific activity. The optimum pH for maximal catalytic activity of the immobilized enzyme was 6.5 at 45 °C. The kinetic studies on the immobilized enzyme and its free counterpart revealed an acceptable change of Km and Vmax. The Km values were found as 4 and 2.5 mM for free and immobilized enzymes, respectively. The Vmax values for the free and immobilized enzymes were calculated as 1.75 and 1.03 μmol mg?1 min?1, in order, when starch was used as the substrate. A quick separation of immobilized amylase from reaction mixture was achieved when a magnetically active support was applied. In comparison to the free enzyme, the immobilized enzyme was thermally stable and was reusable for 9 cycles while retaining 68 % of its initial activity.  相似文献   
19.
Crystallography Reports - The crystal and molecular structure of 2-hydrazinobenzoic acid was determined. In solution in the presence of copper(II) chloride, 2-hydrazinobenzoic acid is transformed...  相似文献   
20.
Absalan G  Safavi A  Maesum S 《Talanta》2001,55(6):352-1233
Artificial neural networks (ANNs) are among the most popular techniques for nonlinear multivariate calibration in complicated mixtures using spectrophotometric data. In this study we propose a computer-based method for removing Te(IV) interference in the determination of Se(IV) using artificial neural networks. In this way, an artificial neural network consisting of three layers of nodes was trained by applying a back-propagation learning rule. The resulting RMSE of prediction for selenium was obtained as 0.108.  相似文献   
[首页] « 上一页 [1] 2 [3] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号