首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1368篇
  免费   83篇
  国内免费   28篇
化学   1109篇
晶体学   21篇
力学   57篇
数学   94篇
物理学   198篇
  2024年   7篇
  2023年   11篇
  2022年   48篇
  2021年   66篇
  2020年   76篇
  2019年   56篇
  2018年   72篇
  2017年   58篇
  2016年   100篇
  2015年   64篇
  2014年   86篇
  2013年   155篇
  2012年   109篇
  2011年   98篇
  2010年   80篇
  2009年   48篇
  2008年   63篇
  2007年   55篇
  2006年   37篇
  2005年   32篇
  2004年   23篇
  2003年   23篇
  2002年   22篇
  2001年   11篇
  2000年   8篇
  1999年   8篇
  1998年   4篇
  1997年   1篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   5篇
  1989年   6篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1979年   2篇
  1977年   2篇
  1969年   1篇
排序方式: 共有1479条查询结果,搜索用时 15 毫秒
91.
Faisal  Muhammad  Saeed  Aamer  Shahzad  Danish  Dar  Parsa  Larik  Fayaz Ali 《Molecular diversity》2020,24(2):571-592
Molecular Diversity - Aldehydes and ketones are parts of millions of compounds and are important classes of chemicals which serve as important precursors for the synthesis of library of compounds....  相似文献   
92.
The present study aims to characterize and predict models for antibacterial activity of a novel oligosaccharide from Streptomyces californics against Erwinia carotovora subsp. carotovora using an adaptive neuro-fuzzy inference system and an artificial neural network. The mathematical predication models were used to determine the optimal conditions to produce oligosaccharide and determine the relationship between the factors (pH, temperature, and time). The characteristics of the purified antibacterial agent were determined using ultraviolet spectroscopy (UV/Vis), infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (1H- and 13C-NMR), and mass spectrometry (MS). The best performances for the model were 39.45 and 35.16 recorded at epoch 1 for E. carotovora Erw5 and E. carotovora EMCC 1687, respectively. The coefficient (R2) of the training was more than 0.90. The highest antimicrobial production was recorded after 9 days at 25 °C and a pH of 6.2, at which more than 17 mm of the inhibition zone was obtained. The mass spectrum of antimicrobial agent (peak at R.T. = 3.433 of fraction 6) recorded two molecular ion peaks at m/z = 703.70 and m/z = 338.30, corresponding to molecular weights of 703.70 and 338.30 g/mol, respectively. The two molecular ion peaks matched well with the molecular formulas C29H53NO18 and C14H26O9, respectively, which were obtained from the elemental analysis result. A novel oligosaccharide from Streptomyces californics with potential activity against E. carotovora EMCC 1687 and E. carotovora Erw5 was successfully isolated, purified, and characterized.  相似文献   
93.
Activated carbons (AC) have been long recognized as prominent absorbents in industries and feature numerous applications in preventing or absorbing the harmful gases and liquids and could be employed for filtration and remediation or even reutilization of chemicals. In order to investigate the capacity of AC in reducing the absorption of heavy metals (HM) including lead (Pb) and cadmium (Cd) and dual complex (Pb?×?Cd) by spinach, a factorial experiment in a completely randomized design with three replications on a pot trial was conducted. Three factors including five levels of AC 0, 5000, 10000, 15000, 20000?mg/kg soil, one concentration level of Pb 4,000?mg/kg soil and one concentration level of cadmium Cd 8?mg/kg soil were tested. The index of heavy metal concentration was calculated in leaf, stem and root and their corresponding dry weights. Results illustrated that in contaminated soils, plants with AC exhibited a superior reduction of absorption of HM vis-à-vis the plants without AC. The foremost result regarding the impact of AC on reducing the concentration of Pb and Cd was observed in 20,000 level of AC. This reveals that AC declined the soil contamination and lessened the accumulation of HM into the shoots and roots. Results suggest that the application of AC may be an eligible solution for decreasing the translocation of HM into the plants.  相似文献   
94.
Polyimide‐silica (PI‐SiO2) hybrids were prepared from a novel polyimide (PI), derived from pyromellitic dianhydride (PMDA), 1,6‐bis(4‐aminophenoxy)hexane (synthesized) and 4,4′‐oxydianiline. SiO2 networks (5–30 wt%) were generated through sol–gel process using either tetraethylorthosilicate (TEOS) or a mixture of 3‐aminopropyltriethoxysilane‐PMDA‐based coupling oligomers (APA) and TEOS. Thin, free standing hybrid films were obtained from the respective mixtures by casting and curing processes. The hybrid films were characterized using Fourier transform infrared, 29Si nuclear magnetic resonance (NMR), field emission scanning electron microscopy (FE‐SEM), energy dispersive X‐ray spectrometry and atomic force microscopy (AFM) techniques. 29Si NMR results provide information about formation of organically modified silicate structures that were further substantiated by FE‐SEM and AFM micrographs. Contact angle measurements and thermogravimetric thermograms reveal that the addition of APA profoundly influences surface energy, interfacial tension, thermal stability and the residual char yield of modified hybrids in comparison to those obtained by mixing only TEOS. It was found that reduced particle size, efficient dispersion and improved interphase interactions were responsible for the eventual property enhancement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
95.
Germanane (GeH), a germanium analogue of graphane, has recently attracted considerable interest because its remarkable combination of properties makes it an extremely suitable candidate to be used as 2D material for field effect devices, photovoltaics, and photocatalysis. Up to now, the synthesis of GeH has been conducted by substituting Ca by H in a β‐CaGe2 layered Zintl phase through topochemical deintercalation in aqueous HCl. This reaction is generally slow and takes place over 6 to 14 days. The new and facile protocol presented here allows to synthesize GeH at room temperature in a significantly shorter time (a few minutes), which renders this method highly attractive for technological applications. The GeH produced with this method is highly pure and has a band gap (Eg) close to 1.4 eV, a lower value than that reported for germanane synthesized using HCl, which is promising for incorporation of GeH in solar cells.  相似文献   
96.
Single‐unit‐cell Sn‐MFI, with the detectable Sn uniformly distributed and exclusively located at framework sites, is reported for the first time. The direct, single‐step, synthesis is based on repetitive branching caused by rotational intergrowths of single‐unit‐cell lamellae. The self‐pillared, meso‐ and microporous zeolite is an active and selective catalyst for sugar isomerization. High yields for the conversion of glucose into fructose and lactose to lactulose are demonstrated.  相似文献   
97.
This research paper comprises of the synthesis of polypyrrole (PPy)-Fe2O3 nanocomposites by employing the in situ chemical oxidative polymerization method. The concentration of the filler material was adjusted between 10–50 wt % of PPy. The synthesized nanocomposites were characterized by using X-ray diffraction (XRD). Magnetic analysis and DC electrical conductivity of the samples were carried out using vibrating sample magnetometer (VSM) and two probe DC conductivity method, point towards magnetically active and electrically conductive samples. The magnetic parameters under applied magnetic field demonstrated that the values of coercivity (H c ), saturation magnetization (M s ) and remanence (M r ) can be tailored by carefully controlling the amount of dopant material into the nanocomposites indicating their suitability for controllable switching devices and microwave absorption applications. The DC electrical conductivity showed an increase up to 20 wt % of filler material and thereafter a decrease in the conductivity of nanocomposites with increase in filler content is observed. Thermogravimetric analysis (TGA) showed an increase in thermal stability with an increase in ferrite content in nanocomposites.  相似文献   
98.
In recent decades, there has been an increasing trend toward the technical development of efficient energy system assessment tools owing to the growing energy demand and subsequent greenhouse gas emissions. Accordingly, in this paper, a comprehensive emergy-based exergoeconomic (emergoeconomic) method has been developed to study the biomass combustion waste heat recovery organic Rankine cycle (BCWHR-ORC), taking into account thermodynamics, economics, and sustainability aspects. To this end, the system was formulated in Engineering Equation Solver (EES) software, and then the exergy, exergoeconomic, and emergoeconomic analyses were conducted accordingly. The exergy analysis results revealed that the evaporator unit with 55.05 kilowatts and the turbine with 89.57% had the highest exergy destruction rate and exergy efficiency, respectively. Based on the exergoeconomic analysis, the cost per exergy unit (c), and the cost rate (C˙) of the output power of the system were calculated to be 24.13 USD/GJ and 14.19 USD/h, respectively. Next, by applying the emergoeconomic approach, the monetary emergy content of the system components and the flows were calculated to evaluate the system’s sustainability. Accordingly, the turbine was found to have the highest monetary emergy rate of capital investment, equal to 5.43×1012 sej/h, and an output power monetary emergy of 4.77×104 sej/J. Finally, a sensitivity analysis was performed to investigate the system’s overall performance characteristics from an exergoeconomic perspective, regarding the changes in the transformation coefficients (specific monetary emergy).  相似文献   
99.
Contamination of the biosphere by heavy metals has been rising, due to accelerated anthropogenic activities, and is nowadays, a matter of serious global concern. Removal of such inorganic pollutants from aquatic environments via biological processes has earned great popularity, for its cost-effectiveness and high efficiency, compared to conventional physicochemical methods. Among candidate organisms, microalgae offer several competitive advantages; phycoremediation has even been claimed as the next generation of wastewater treatment technologies. Furthermore, integration of microalgae-mediated wastewater treatment and bioenergy production adds favorably to the economic feasibility of the former process—with energy security coming along with environmental sustainability. However, poor biomass productivity under abiotic stress conditions has hindered the large-scale deployment of microalgae. Recent advances encompassing molecular tools for genome editing, together with the advent of multiomics technologies and computational approaches, have permitted the design of tailor-made microalgal cell factories, which encompass multiple beneficial traits, while circumventing those associated with the bioaccumulation of unfavorable chemicals. Previous studies unfolded several routes through which genetic engineering-mediated improvements appear feasible (encompassing sequestration/uptake capacity and specificity for heavy metals); they can be categorized as metal transportation, chelation, or biotransformation, with regulation of metal- and oxidative stress response, as well as cell surface engineering playing a crucial role therein. This review covers the state-of-the-art metal stress mitigation mechanisms prevalent in microalgae, and discusses putative and tested metabolic engineering approaches, aimed at further improvement of those biological processes. Finally, current research gaps and future prospects arising from use of transgenic microalgae for heavy metal phycoremediation are reviewed.  相似文献   
100.
Diltiazem is an established cardiovascular drug mainly used for the management of hypertension specifically for the angina pectoris. Fluoroquinolones are widely prescribed against the treatment of severe infections. In vitro relations of diltiazem with fluoroquinolones (ciprofloxacin, levofloxacin, norfloxacin, and ofloxacin) were examined using spectrophotometric and separation techniques, i.e., RP-HPLC. Diltiazem’s availabilities were observed to be predisposed highly in the presence of fluoroquinolones. To investigate the mechanism of interaction in a variety of dissolution environments, i.e., simulating body environments with regard to pH on these interactions has been studied. Moreover, complex of diltiazem–fluoroquinolones were prepared and elucidated through IR spectroscopy and confirmed by computational molecular modeling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号