首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1948篇
  免费   39篇
  国内免费   3篇
化学   1279篇
晶体学   15篇
力学   30篇
数学   333篇
物理学   333篇
  2022年   25篇
  2021年   19篇
  2020年   23篇
  2019年   26篇
  2018年   22篇
  2017年   32篇
  2016年   28篇
  2015年   24篇
  2014年   43篇
  2013年   101篇
  2012年   116篇
  2011年   96篇
  2010年   61篇
  2009年   70篇
  2008年   123篇
  2007年   112篇
  2006年   99篇
  2005年   85篇
  2004年   74篇
  2003年   59篇
  2002年   57篇
  2001年   29篇
  2000年   22篇
  1999年   15篇
  1997年   13篇
  1996年   27篇
  1995年   19篇
  1994年   23篇
  1993年   17篇
  1992年   24篇
  1991年   14篇
  1990年   16篇
  1989年   21篇
  1988年   24篇
  1987年   19篇
  1986年   14篇
  1985年   31篇
  1984年   36篇
  1983年   25篇
  1982年   39篇
  1981年   30篇
  1980年   23篇
  1979年   20篇
  1978年   29篇
  1977年   19篇
  1976年   21篇
  1974年   15篇
  1973年   30篇
  1972年   13篇
  1971年   12篇
排序方式: 共有1990条查询结果,搜索用时 31 毫秒
981.
Single-component pulse response studies were used to compare the retention and transport behavior of small molecules, proteins, and a virus on commercially available monolithic and perfusive ion-exchangers. Temporal distortion and extra-column effects were corrected for using a simple algorithm based on the method of moments. It was found that temporal distortion is inversely related to the number of theoretical plates. With increasing bioparticle size, retention increased and the transition from a non-eluting to a non-adsorbing state with increasing ionic strength became more abrupt. Both of these observations are qualitatively explained by calculations of particle-surface electrostatic attractive energy. Calculations also suggest that, for sufficiently large bioparticles, such as viruses or cells, hydrodynamic drag can promote elution. Under non-adsorbing conditions, plate height increased only weakly with flow rate and the skew remained unchanged. With increasing retention, plate height increased dramatically for proteins. Plate height was scaled by permeability rather than bead diameter to enable comparison among different stationary phases.  相似文献   
982.
Seven new uranyl vanadates with mono-protonated amine or tetramethylammonium used as structure directing cations, (C2NH8)2{[(UO2)(H2O)][(UO2)(VO4)]4}·H2O (DMetU5V4) (C2NH8){[(UO2)(H2O)2][(UO2)(VO4)]3}·H2O (DMetU4V3), (C5NH6)2{[(UO2)(H2O)][(UO2)(VO4)]4}·H2O (PyrU5V4), (C3NH10){[(UO2)(H2O)2][(UO2)(VO4)]3}·H2O (isoPrU4V3), (N(CH3)4){[(UO2)(H2O)2][(UO2)(VO4)]3}·H2O (TMetU4V3), (C6NH14){[(UO2)(H2O)2][(UO2)(VO4)]3}·H2O (CHexU4V3), and (C4NH12){[(UO2)(H2O)][(UO2)(VO4)]3} (TButU4V3) were prepared from mild-hydrothermal reactions using dimethylamine, pyridine, isopropylamine, tetramethylammonium hydroxide, cyclohexylamine and tertiobutylamine, respectively, with uranyl nitrate and vanadium oxide in acidic medium. The structures were solved using single-crystal X-ray diffraction data. The compounds exhibit three-dimensional uranyl-vanadate inorganic frameworks built from uranophane-type uranyl-vanadate layers pillared by uranyl polyhedra with cavities in between occupied by protonated organic moieties. In the uranyl-vanadate layers the orientations of the vanadate tetrahedra give new geometrical isomers leading to unprecedented pillared systems and new inorganic frameworks with U/V=4/3. Crystallographic data: (DMetU5V4) orthorhombic, Cmc21 space group, a=15.6276(4), b=14.1341(4), c=13.6040(4) Å; (DMetU4V3) monoclinic, P21/n space group, a=10.2312(4), b=13.5661(7), c=17.5291(7) Å, β=96.966(2); (PyrU5V4), triclinic, P1 space group, a=9.6981(3), b=9.9966(2), c=10.5523(2) Å, α=117.194(1), β=113.551(1), γ=92.216(1)°; (isoPrU4V3) monoclinic, P21/n space group, a=10.3507(1), b=13.6500(2), c=17.3035(2) Å, β=97.551(1)°; (TMetU4V3) orthorhombic, Pbca space group, a=17.1819(2), b=13.6931(1), c=21.4826(2) Å; (CHexU4V3), triclinic P−1 space group, a=9.8273(6), b=11.0294(7), c=12.7506(8) Å, α=98.461(3), β=96.437(3), γ=105.955(3)°; (TButU4V3), monoclinic, P21/m space group, a=9.8048(4), b=17.4567(8), c=15.4820(6) Å, β=106.103(2).  相似文献   
983.
An analytical method using an optical probe in a photoelectrochemical cell for the sensitive and selective determination of aqueous Hg2+ is presented. A previously synthesized Hg2+ selective chemosensor, proven to be Hg2+ sensitive up to 2 μg L−1, has been immobilized onto indium tin oxide (ITO) electrodes in a composite form with polyaniline. The coated ITO electrode was placed in a photoelectrochemical cell under closed circuit conditions in which the optical recognition of the chemosensor was converted to a measurable signal. A composite of the fluorescent chemosensor, Rhodamine 6G derivative (RS), and polyaniline (PANI) was immobilized on ITO glass plates and subjected to photovoltage measurements in the absence and presence of Hg2+. The optical responses of the coated electrode were used to determine the sensitivity and selectivity of the immobilized sensor to Hg2+ in the presence of background ions. The optical response of the PANI-dye coated electrode increased linearly with increasing Hg2+ concentration in the range 10-150 μg L−1, with a detection limit of 6 μg L−1.  相似文献   
984.
985.
Patel MV  Tovar AR  Lee AP 《Lab on a chip》2012,12(1):139-145
A novel on-chip microfluidic switch is demonstrated that utilizes the acoustic microstreaming generated by an oscillating air-liquid interface to switch cells/particles into bifurcating microchannels. The air-liquid interface of the Lateral Cavity Acoustic Transducers (LCATs) can be actuated by an external acoustic energy source causing the interface to oscillate. The oscillating interface results in the generation of vortex-like microstreaming flow within a localized region of the surrounding liquid. This streaming was utilized here to deflect cells/particles into a collection outlet. It was demonstrated that the switching zone could be controlled by varying the actuation time of the LCAT. An LCAT based microfluidic switch is capable of achieving theoretical switching rates of 800 cells/particles per second. It was also demonstrated that K562 cells could be switched into a collection channel with cell viability comparable to that of controls as determined by Trypan blue exclusion assay.  相似文献   
986.
Lee C  Lee J  Kim HH  Teh SY  Lee A  Chung IY  Park JY  Shung KK 《Lab on a chip》2012,12(15):2736-2742
This paper presents experimental results demonstrating the feasibility of high frequency ultrasonic sensing and sorting for screening single oleic acid (lipid or oil) droplets under continuous flow in a microfluidic channel. In these experiments, hydrodynamically focused lipid droplets of two different diameters (50 μm and 100 μm) are centered along the middle of the channel, which is filled with deionized (DI) water. A 30 MHz lithium niobate (LiNbO(3)) transducer, placed outside the channel, first transmits short sensing pulses to non-invasively determine the acoustic scattering properties of the individual droplets passing through the beam's focus. Integrated backscatter (IB) coefficients, utilized as a sorting criterion, are measured by analyzing the received echo signals from each droplet. When the IB values corresponding to 100 μm droplets are obtained, a custom-built LabVIEW panel commands the transducer to emit sinusoidal burst signals to commence the sorting operation. The number of droplets tested for the sorting is 139 for 50 μm droplets and 95 for 100 μm droplets. The sensing efficiencies are estimated to be 98.6% and 99.0%, respectively. The sorting is carried out by applying acoustic radiation forces to 100 μm droplets to direct them towards the upper sheath flow, thus separating them from the centered droplet flow. The sorting efficiencies are 99.3% for 50 μm droplets and 85.3% for 100 μm droplets. The results suggest that this proposed technique has the potential to be further developed into a cost-effective and efficient cell/microparticle sorting instrument.  相似文献   
987.
The use of a moderately hydrophobic ionic liquid, 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([BdMIM][BF(4)]), as a cosolvent with water, has been investigated in the synthesis of metal phosphonates. This hydro-ionothermal synthesis has been carried out through a systematic combinatorial investigation of several divalent metal chlorides and two related ligands, iminobis(methylphosphonic acid) and N-methyliminiobis(methylphosphonic acid). These reactions resulted in five new divalent metal phosphonates. We present here the synthetic techniques utilized as well as the X-ray structures and characteristic properties of each of these compounds. Co(HO(3)PCH(2)NH(2)CH(2)PO(3)H)(2), (1), consists of sheets that are hydrogen bonded together by pairs of P-O···H groups. Co(H(2)O)(2)(HO(3)PCH(2)NH(2)CH(2)PO(3)H)(2), (2), consists of chains that are connected through an extensive network of hydrogen bonds. Co(HO(3)PCH(2)NH(CH(3))CH(2)PO(3)H)(2), (3), is made up of sheets that are hydrogen bonded together by pairing P-O···H interactions. Zn(3)(O(3)PCH(2)NH(2)CH(2)PO(3))(2), (4), is isostructural to a previously reported cobalt compound which is a non-porous 3-dimensional network. CuClPO(3)CH(2)NH(2)CH(3), (5), formed as a result of an in situ N-C bond cleavage. Ladders built of Cu-O-P-O 8-membered rings are crosslinked by bridging chloride atoms to form sheets. 1, 3, 4 and 5 have been synthesized using the hydrophobic ionic liquid 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ([BdMIM][BF(4)]) with water as a cosolvent, while 2 has been synthesized from identical conditions in the absence of the [BdMIM][BF(4)]. We also report the microwave assisted hydro-ionothermal synthesis of the known polymorph of 2, Co(H(2)O)(2)(HO(3)PCH(2)NH(2)CH(2)PO(3)H)(2), (6), synthesized in two hours providing high quality crystals in good yield. The compounds have been characterized by thermogravimetric analysis and IR spectroscopy, and their magnetic properties have been investigated.  相似文献   
988.
The purpose of this study was to investigate the relationship between liver fat fraction (FF) and diffusion parameters derived from the intravoxel incoherent motion (IVIM) model. Thirty-six subjects with suspected nonalcoholic fatty liver disease underwent diffusion-weighted magnetic resonance imaging with 10 b-values and spoiled gradient recalled echo imaging with six echoes for fat quantification. Correlations were measured between FF, transverse relaxivity (R2), diffusivity (D) and perfusion fraction (f). The primary finding was that no significant correlation was obtained for D vs. FF or f vs. FF. Significant correlations were obtained for D vs. R2 (r=-0.490, P=.002) and f vs. D (r=-0.458, P=.005). The conclusion is that hepatic steatosis does not affect measurement of perfusion or diffusion and therefore is unlikely to confound the use of apparent diffusivity to evaluate hepatic fibrosis.  相似文献   
989.
990.
Solvent-free ion/surface chemistry is studied at atmospheric pressure, specifically pyrylium cations, are reacted at ambient surfaces with organic amines to generate pyridinium ions. The dry reagent ions were generated by electrospraying a solution of the organic salt and passing the resulting electrosprayed droplets pneumatically through a heated metal drying tube. The dry ions were then passed through an electric field in air to separate the cations from anions and direct the cations onto a gold substrate coated with an amine. This nontraditional way of manipulating polyatomic ions has provided new chemical insights, for example, the surface reaction involving dry isolated 2,4,6-triphenylpyrylium cations and condensed solid-phase ethanolamine was found to produce the expected N-substituted pyridinium product ion via a pseudobase intermediate in a regiospecific fashion. In solution however, ethanolamine was observed to react through its N-centered and O-centered nucleophilic groups to generate two isomeric products via 2H-pyran intermediates. The O-centered nucleophile reacted less rapidly to give the minor product. The surface reaction product was characterized in situ by surface enhanced Raman spectroscopy, and ex situ using mass spectrometry and H/D exchange, and found to be chemically the same as the major pyridinium solution-phase reaction product.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号